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Thermal Contact Resistance in a Non-Ideal Joint
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by Richard T. Roca

o

3
% and BorivojJe B. Mikic

% ABSTRACT

? The contact conductance at an interface can be

? determined by knowling the material and surface properties

§T and the interfacial pressure distribution. This pressure

i distribution can be influenced strongly by the roughness of

%: the mating surfaces but until now this effect has been ignored

g: in studies of joint conductance. This thesis considers this

%ﬁ effect and shows the circumstances when it is an important

% factor. Furthermore, it 1s shown that one can either raise h
%» or lower tne total resistance of a joint by changing the

surface properties in the proper manner for the particular
system being considered.

Specifically, this thesis ieals with three systems:
the contact of two rough, wavy surfaces; the contact of two
rough but nominally flat plates pressed together over a con-
centrated area; and the contact of t: 0 rough but nominally flat
plates bolted together. 1In each case the pressure distribution
is calculated as a function of the surface properties. In the
case of wavy surfaces it is found that all necessary information

for any combination of parameters :an be reduced to one master

graph. In the other two cases one such graph 1s needed for each
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gecmetry used. The resulting pressure distributions are used
in a specific heat transfer example and the total Joint re-
sistance versus roughness 1s presented. It 1s shown how one
can actually Zecrease the resistance by increasing the rough-
ness - a seemingly contradictory phenomenon.

Heat transfer experiments performed by Joseph

Pigott qualitatively confirmed the theoretical findings.
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NOMENCLATURE
a Radius of disk
a a/b
ah Radius of contact 1n Hertzian case
Aa Apparent contact area
Ac Actual contact area
b Thickness of disk
c Radius of hole in disk
c c/b
E1 Young's Modulus of body 1
-1

_ l-vi] (l-vg .
E _ + -

E TE

mEy 2
E( ) Expected value
F Load ;
hc Thermal contact conductance
H Vicker's hardness
H H/p0
H#* E tan 8/m 2v2

I0 1 Modified Bessel function of the first kind of
3

order zero, one

JO 1 Bessel function of the first kind of order zero, one
H

k1 Thermal conductivity of body 1

k 2k1k2/(k1+k2)
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q/A

el

Modified Bessel function of the second kind of

order z2ro, one

Number of contact points per unit area

Number of terms used in infinite series

Pressure

For spherical surfaces ~ average Hertzlan stress

for disks - average load stress
p/p,

Heat flux
Radial coordinate
r/b for disk; r/ah for spheres

Radius of contact at interface
rc/b for disks; rn/ah for spheres
Radius of applied load

ro/b for disks; ro/ah for spheres
Radius of curvature for body 1
R1R2/(R1+R2)
Contact resistance

Truncation factor

Mean of absolute slope of profile

Temperature

Deflection of surface with respect to coordinate

origin
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m ceven

z|

Qal

rz

wE/.bpo

Distance from mean surface of body
Distance between mean surfaces of two bodies
in contact

yﬁyahpo for spheres; yE/bp  for disks

Bessel function of the second kind of order zero, one

Axial coordinate

Zero of Jl(en) =0

Polsson's ratio

rms roughness of surface on body 1

2

1+0

2

oE/anp for spheres; oE/bp, for disks

0
Radial normal stress

Axial normal stress

Parametric representation for force-deflection

relationships (sze Appendix for particular values)

Shear stress
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1. INTRODUCTION

1.1 Phenomenon Description and Previous Work

The concept that there 1s a i1esistance to the flow
of heat at the interface of two materials has been acknow-
ledged for some time but 1t has only been within the last
few decades with the advent of modern electronics and nuclear
power that this resistance has had importance.

It has been cubserved that if a heat flux 1is passed
through a body, ¢ linear temperature -hange will occur as
shown in Figure la. If, howcever, this body has an interface,
the temperature change will not be linear in the neighborhood
of the interface as shown in Figure 1b. The additional resis-
tance to heat flow caused by the presence of the interface

is the contact resistance. It is defined as

_ AT
RC = m (1)
where AT 1is the temperature differcace zat the interface
between the «xtended linear profiles. The reciprocal of
the resistance, the thermal contact conducta.ce is, therefore,
= L = /A
h, = g AT (2)
c
The reason for this interfaclal resistance has been

attributed to various phenomena including quantum effects due

[ T -
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to mis ‘fenment of the crystal lattices, [1-5]%; surface films
(oxide and other contaminerts), [6]; and heat flow constriction.
While the former two may apply in certain specific occasions,
the predominant effect by far 1s the latter, the constriction
resistance.

Because real surfaces are not smooth (in the micro-
scopic sense) but are made up of asperities, two surfaces in
contact will not touch over 100% of the apparent area in
contact but only where the asperities touch. The actual
area of contact may be of the order of 0.1% of the apparent
area. Since heat will only flow through the actual area in
contact, the constriction of heat flow and, hence, the added
resistance will be present. The other parameter of prime
importance influencing the contact resistance other than the
roughness is the pressure which directly affects the actual
to apparent area ratio.

There is extensive literature dezling with contact
resistance, both experimental [7-30] and analytical [31-36].
A1l of the latter realize the importance of surface roughness
but most use a rather cumbersome manual technique to predict
the contact conductance. 1In [36], however, advantage is
taken of the statistical nature of the problem and expected
values for the conductance are arrived at. Based on the

model shown in Figure 2 it is found that

Numbers in brackets denote references listed at the end.
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.985
n, = 1.45 ktane) (p) (3)

This was developed tor contact in a vacuum (i.e., heat
passing only through asperities in contact and not through

“he gaps), Gecussian distribution of surface heights above

a mean plane, e-.d contact between two nominally flat surfaces -

uniform p. If the surfaces are not flat and contact pressure
varies with a particular coordinate, say radius r in an
axially-symmetric system, then h, 1s modified to hc(r).
Relationship (3) has been substantiated independently in
[291].

Other phenomena connected with thermal contact
conductance which havse been investigated over the past years
are: the directional effect [37-43]; the effect of previous
loading [44]; the effect of plating [45]; the effect of
interstitial materials [27,46,L/]; specific surface
geometries and materials [28,48-52]; specific systems such
as bolted or riveted Joints [53-60]; and nonuniform pressure
distribution J[61,62]. Additional references can be found
in the bibliographies given in [27,28,48,51] and in [63-65].

It should be noted that it 1is impossible to
develop a general relationship for the resistance of an
interface, Rc, regardless of the system of which the inter-
face 1s a part. Contact resistance is a constriction resis-
tance and can only be described by distributed system para-

meters such as hc as a function of surface location. To take

A it 6
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advantage of a succinet lumped parameter such as Rc is to limit
its use only to the specific case for which it was developed.
Therefore, while there 1is much experimental work available

as mentioned before, much of i1t is applicable only to

the specific case studied by the experimenter. The best

that can be done is to investigate trends and give general
relationships for the behavior at the interface, such as
equation (3).

1.2 Statement of the Problem

In the contact of certaln systems such as bolted
or riveted plates, clamped disks, wavy plates, etc., there is
contact in certain areas and narrow gaps between the surfaces
in others. See, for example, Figure 3. Heat which is to
flow from one body to another must first be constricted to
the areas of large scale contact and then, once in these
areas, must be constricted still further to the actual areas

of contact at the roughness asperities.® From (3) one sees

that

hc(r) a 2%51

It is assumed that no heat is transferred across the gaps.
In the case of radiation this 1is a warranted assumption at
the temperatures usually considered. For conduction through
a gas which might be in the gap this assumption 1s weak.
However, 1f the assumption is made and the gas ignored -

the case of a vacuum - the resulting relationshlip can be
combined later with the parallel flow of heat through the
gap for an overall result. See [29,36]. Since the gap is
so narrow, convection is justifiably ignored.

an o e, 4
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where 1t is assumed that one 1s dealing with an axially-
symmetric system and 1s allowing for radial variations in
pressure. If p(r) were not affected by the roighness, then
increasing the roughness would directly decrease the contact
conductance. However,1f one increases the roughness 1in a
case where there 1s a narrow gap, the asperities may touch
in this gap and p(r) will then be affected. See Figure
4y, Since the tendency will be to enlarge the large-scale
area of contact, that constriction will be lessened. However,
since the roughness is being increased, the small-scale
constriction, that due to the asperities, will increase.
These two trends, both due to an increase in o, run opposite
to each other. It 1s the purpose of this thesis to investi-
gate the combined effect.
There are three immediate reasons to do this: to
explain previously unexplainable experimental observations
where the resistance at an interface decreased when the
roughness was increased, e.g. [48,66]; to determine if it
is necessary, as it is now assumed, to go through the expensive
process of smoothing a surface to a mirror finish in order i
to enhance the contact conductance; and to see if one can
control more accurately the contact resistance of an overall
system by varying the roughness. oy

The specific cases investigated here are those ]

shown in Figure 3: two wavy surfaces, two externally clamped :
plates, and two bolted plates. The cases and models, all

assumed to be axially-symmetric, are as follows: ' )

| e PEATUE s
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(1) Wavy surface - Figure 5 - The wavy surfaces (Figure
3a) are modeled as two semi-infinite elastilc bodies
with non-flat surfaces of uniform (but not necessarily
equal) radii of curvature. The radius of contact 1s
assumed to be much less than the radius of curvature.
For ¢ = 0 this is the hertzian problem.

(2) Clamped plates - Figure 6 - The externally clamped
plates (Figure 3b) are modeled as two adjoining
elastic disks of finite radius and thickness. They
are forced together under a uniform lcad over a
prescribed area. There are no other shear or normal
loads on any face or edge.

(3) Bolted joint - Figure 7 - The bolted (or riveted)
plates (Figure 3c) are modeled as two adjoining
elastic disks with center holes. These disks of
finite radius and thickness are forced together
under a uniform load over a prescribed annular area.
There are no other shear or normal loads on any face
or edge.

The required information 1is hc(r) for each model.

From equation (3) one sees that in order to obtaln
the conductance it is nececsary and sufficient to obtain the
interfacial pressure distribution, p(r). (The other parameters
in (3) are functions of the materials.) The main goal of
the thesis 1s to calculate p(r) for each of the three models
and incorporate the result in thermal contact resistance

behavior.
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The overall method of solution is straightforward.
It is assumed that an asperity experiences the same load
that the part of the main body directly under it experiences.
It is further assumed that the asperities will "ride" on the
mean surface of the body in addition to being deformed. The
protlem is then separated into two parts: deformation of
the asperities and the deformation of the large body. The
latter 1is solved using classical techniques of mechanics.
Figure 8 illustrates the above.
The final result is arrived at through an iterative
procedure utilizing three constraints:
(1) the elastic deformation of a body must conform to
the pressure distribution it experiences;
(2) the deformation of the asperities must conform to
the pressure distribution they experience:
(3) the total load applied to the elastic body is equal
to the sum of the loads applied to the asperities.
This t -*nique is not new with this paper and has been used
before by various investigators [62,67,68].

To solve the problem for these three models, there-
fore, general force-deflection relationships for asperities,
semi-infinite bodies, and finite disks with holes are needed.
Previous work done in these areas will now be discussed.

1.3 Deformation of Asperities

It has heen shown [69-71] that the behavior of a

real surface can be described using the Gaussian distribution.

-, y . . : 5 o :‘;1 M . - -
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For complete identification of a surface for our purposes
one needs two statistical parameters: the standard devia-
tion and the average mean slope. In thlis section the
salient results developed by Mikic T36,72,73] are presented
for such a Gaussian model. Both plastic and elastic defor-
mation of the asperities are considered.

The model shown in Figure 2 illustrates a typical
contact between two real surfaces. The mean lines are what
are normally called the "surfaces" of the bodies. The actual
contact between these two bodies is at discreet points where
the asperities overlap. A statistical description of the
surface 1is necessary and as mentioned before the distribution
of heights of the surface above the mean line has been found

to be Gaussian. That is

o2
1 e y

2n

/202

g

probability (y) =

In the work done by Grezsnwood [70,71] it is not the height

of the surface which is considered but the heights of the
peaks. This forces one to assume an asperity shape in order
to account for the remainder of the surface. While Greenwood
has shown that the choice is not particularly critical [71],
the model in [36] is less restrictive.

In using a Gaussian moacl i1t should be noted that,

E(y) = 0

T T AR Wi b W e cd b s
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EC(lyl]) =€ o

where E( ) 1s the expected value. The first is the mean
value of y which is defined to be zero since y is measured
from the mean plane. The second is the rms value and is
equal to the standard deviation. The third is the center
line average, or CLA, and is that value usually measured by
such instruments as a Talysurf.

The other parameter needed to describe the surface

is the average absolute value of the slope, tan(8), where

tan(e) = % J l%%ldx
L

This has been found experimentally to be in the neighborhood
of (0.1).

Besides a Gausslian distribution of asperity height
above a mean plane, the other experimentally observed cri-
terion to be met is Amonton's Law: the frictional force
between two bodies is dependent on contact load only and
independent of apparent area. This implies that the actual

contact area, Ac, is proportional only to load, F,

Ac a F

_.-.. T e B ey P bt £ i
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but since F = pAa then,

lo

Pag (#)

By assuming that each asperity is a small hardness indentor
and that the asperities deform plastically, one can remove
the proportionality from (4) with use of the experimentally

obtained hardness, H. Since F = HAc then

A
=H <
p=Hjx (5)

a
Using the model in Figure 2 one can find the
probabllity that the surfaces intersect, p(y1+y2>y0); and,

from that, predict the area in contact [36]. The result is

A y
KQ = 1/2 erfc -0 (6)
a ay2
where
® 2
erfec(x) - £ e~ b at
/m X
Therefore from (5) and (6),
H Yo
p = = erfc|—— (7)
° (/5}
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Equation (7) is, then, the required force-deflection
relationship needed in the eventual solution if one assumes

that the asperities deform plastically.

Another result of interest is the number of contacts
per unit area, n. To derive this one must also use the second

statistical parameter mentioned, tan(®). The final result

given in [72] is

2,.2
n = tan gg) e (8)
160 Yo
erfc |—
o/?2

The only additional assumption needed is that the radius of
curvature of the asperities before deformation is the same
for all contacts which started at the same distance from the
mean plane.

If the asperities deform elastically rather than
plastically then (5) is no longer applicable. In [73] it is

shown that for elastic deformation of the asperitiles,

A Yo
KQ = 1/b4 erfec|—= (9)
a a2

and

p = 1/).[ M erfe _y_g_ (10)
/2 a/2

H s kb
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ke, AL Lt 0 e

-
" vt s,




- 28 -

where

1-' —
E T T nE Y —TE (11)

This is the force-deflectlion relationship which one uses 1if
the asperiti.es are assumed to yield elastically. Except for

this, the same assumptions are made here as before. The

Jpp— NSO PP S TR MO IS W e oy

number of contacts per unit area is the same, =quation (8).

If one considers H* to be an equivalent hardness,

H* = E't;jge) (12)
™

then for the elastic case

# y
p = %? erfc'—il
o/2

ENOWIRORITSL et i U

It is obvious from (9) and (10) that Amonton's Law is

satisfied since

D = E tan(e) fg
/2 Ay

3
H
o o SINEIRTIAIAIONRIN Y, et

Figure 9 illustrates the behavior of the various parameters
versus yo/o and Figure 10 summarizes the results.

In brief, then, regardless of whether or not the
asperities deform plastically or elastically one has a

force-deflection expression in the form
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y
p = % erfc L
a/2

For plastic deformation H is the Vickers hardness. For

elastic deformation H is that given in (12), H¥,

" 1.4 Deformation of Spherical Surfaces

The previous section showed that there was sufficilent

information already existing in the literature concerning
the deformation of asperities to satisfy the needs of thils
paper. The next three sections will review previous work
done on the models given in Pigures 5-7. In all three of
these models two facts are needed: What is the 1lnterfacial
pressure distribution for zero roughness when the two bodles
are pressed together? What 1s the deflection at the surface
for an arbitrary interfacial pressure distribution? The
latter 1s needed in the iteratlon procedure when the roughness
is non-zero.

In the case of two bodles with spherical surfaces
(Figure 5), the first question has been answered by the work
of Hertz [74]. For the model shown in Figure 5, with ¢ = 0,
the interfacial pressure distribution is

5 2]1/2

p(r) = 2 L= [1 - r°/a (13)
2 2 h
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where the radius of the contact area, ;s is

- 1/3
T
8, = I%T 1:]

E

(14)

It is assumed that each body 1s a semi-infinite elastic body,

that the radii are of constant curvature (before deformation)

within the area of contact, and that R >> a

a variable pressure distribution.

h.

There are two ways to solve the second problem of

The first 1s to superimpose

point load solutions [7U4], the second 1s to use Hankel trans-

forms (Terezawa's solution) [76].

The point load solution

is difficult to use tecause of the point of discontinuity

which arises.

solution 1is used here instead.

To avoid this difficulty the Hankel transform

The procedure is to take the

solution for a flat semi-infinite body and add to it the

original curvature.

two opposing points on the two bodies.

Using the notation given in Figure 11, the deflection

at the surface of a semi-infinite body w(r)

p(r) is [76]

where

2 [- ]
wir) = 3-11;"4[ P(p)J,(pr)dp

P(p) = J rp(r)Jo(pr)dr
0

This glves the overall distance between

due to a load,

(15)

(16)

-
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The distance, then, between two points opposing each other
(Figure 11) without considering the curvature is
[

W, =W + W, -W

Superimposing the curvature of the bodies gives the total

distance between the two points Al and A2

2
1 1
AA. = |w, =W + (W, -w +£_ _+__]
172 [ Ay Cl} [ A2 02} 2 {Rl R2.

or, from (15)

-] 0 2
AR, = en [ P(p)J,(pridp - X ] P(p)dp + = (17)
E E 2R
C 0

The above assumes that the bodies touch at C1 and 02. When

the roughness is considered, a constant term, Yo will be

added to (17) to account for the separation of the two

reference points.

Using a procedure similar to the above but using
the superposition method rather than Hankel transforms,
Greenwood [75], Flengas [68], and McMillan [62] all investi-
gated the effect of roughness on the interfacial pressure
distribution and arrived at similar conclusions. Because
of an unfortunate choice of non-dimensional variables, how-

ever, the results puvlished were not general and could be

, . : v B N . . T L
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used on'y for the specific cases presented. The main con-

tribution here is to show that by proper non-dimensionalizing,

all pertinent data regarding this problem can be reduced ..
one compact graph. This will be done in section 2.1.

To recapitulate: as was done for asperities, a
basic forc~o-deflection relationship for spherical surfaces
has been presented, equation (15). It is not in as simple
a form as that for the asperities and will generally require
numerical integration for a particular p(r).

1.5 Deformation of Solid Disks

Unlike the case of contact between two spherical
surfaces, there 1s no exact solution available for the
contact of two solid disks with zero surface roughness. The
expected behavior is intimate contact with finite pressure
and zero deflection (symmetrical loading assumed) within a
certain radius of contact, Ty and zero pressure and finite
deflectlion outside of Ty Of Interest is both the nature of
the pressure distribution, p(r), and the value of r,-

In lieu of an exact solution, the midplane stress
of a single plate of thickness 2b (rather than two plates
each of thickness b) has been used [73-80]. Even though the
midplane stress becomes tensile a certain distance from the
centerline it has been assumed that this can be ignored.
From this it is estimated [79] that the radius of contact

for ro/b > 0.5 is

r, =T, +b (18)

umm:;, LA Bikes
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It will be shown later that this relationship can be im-
proved.

Figure 12 gives published results for the midplane
stress. These are from [79] but the results of the other
references cited agree with them.

As was mentioned before, besides the contact
pressure between two smooth disks, the force-deflection
relationship for a single disk of thickness b is necded
(Figure 6). No solution exists in the literature for a
disk of finite radius but does exist for one of infinite
radius [77,79]. The solution to the finite radius problem
will be presented later in this paper. It is found using
a method suggested by Pickett [81] in solving the similar

problem of a cylinder under a compressive loaé from two

rigid bodies. The method, which uses Fourier-Bessel series,

is explained in the Appendix. With this soluticn, compari-
son to the existing one will be made and the accuracy 1in
usiﬁg the midplane stress for the contact pressure (at zero
roughness) will be examined.

Therefore, as was done with srherical surfaces, a
force-deflection relationship for disks will be presented
and used along with that for the asperities in order to
examine the effect of varying roughness.

1.6 Deformation of Disks with Center Holes

While no exact closed-form solution exists for

the contact of two disks with center holes, a numerical one

e “%@Mw&amm}w« N
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does [83]. This finite-element solution solves the mixed
boundary value problem of zero deformation up to r. and

zero pressure beyond r, by a trial and error technique of
locating r,. The results are found to be Independent of

hole radius. The relationship given for r, is,

r, = r, + 0.5b (19)

The model, data on which (19) is based, and an example of
the pressure distribution for contact between two smooth
plates are given in Figures 13 and 14. It should be noted
from the latter that the midplane distribution is not a
good estimate of the interifacial contact pressure. Not
only is the negative pressure zone not found in the correct
solution (as is expected), but the rate of decrease of p(r)
beyond ry is much steeper than that predicted by the mid-
plane stress curve. However, if one extends the tangent to

the midplane stress curve at r, to the r axis it will inter-

0
sect at, or close to, the value of r. predicted by the
numerical solution. It seems reasonable then to extend this

approximation to the previous section where there was no

T e L BN

center hole. If this is done it 1is seen that equation (19)

can be used there also for predicting L One expects (19)

to decrease in accuracy as ry decreases, in elther case. R
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There have also been approximate solutions for
p(r) developed through the use of thin plate theory [84,85].

The form used 1s

m
p(r) = p*|1 - [?ﬁ} 9<p<r

"
o
]

v
&

The constants p*, m, and r, are unknown and are evaluated
using various boundary condltions and assumptions. The
critical boundary condition that the deflection is zero
within the radius of contact cannot be met, however. Thin
plate theory assumes uniform stress through the narrow
dimension of the plate (here the z axis). The essence of
the contact problem considered here 1s the change in the
stress through this thin section. To meet the requirement
of changing p(r) with z and zero deflection for r < r, is
impossible.

At large values of ro/b one can use the approxi-

mation

and, therefore,

gy ¢ { ‘H " Stk wd T aw e ot - e S
E ] % 4 R

RroTeL o etk




- 42 -

N Experimental results [83,85] bear out the analytical work

AL 2 M

done in [83].

Like the case with the spherical surfaces, there

E
i
®
f

exists a solution for the contact of two smooth disks with
center holes. There 1s, however, no general force-deflection
relationship which can be used in the more general problem

of contact between two rough disks. Subsequent work will
vield such a relationship.

In the subsequent section the force-deflection
relationship for asperities, (7) or (10), will be coupled
with that for the spherical surfaces, disks without center
hole, and disks with center hole in turn to arrive at the
interfacial pressure distribution for a rough contact.
Knowing p(r), one can use (3) to determine the local contact
conductance hc(r). With this knowledge one can, for example,

find the resistance of a given configuration. This will be

done in section 3 for a particular bolted joint.

-
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2. MECHANICS

2.1 Contact of Two Wayy Surfaces

2.1.1 Model

between two wavy surfaces can be determined by investigating

It 1s assumed that the behavior of the contact

the behavlior of the contact between two spherically shaped

surfaces. It 1s further assumed that

(a)
(b)

(c)
(d)

(e)

(f)

the spherically shaped bodies deform elastically;
the radius of contact, r.s is small compared to the
radii of curvature of the two surfaces;

asperities deform plastically;

asperity height distribution above a2 mean line is
Gaucssian;

asperity contact is normal with no tangential com-
ponent ;

the contact (J.e., pressure distribution and defor-
mation) will be symmetric about an axis through the
center of the area in contact.

Using these assumptions and the model given in

Figure 5, one can arrive at the following set of equations

(see sections 1.3 and 1.4) for the

(a)

deformation of spherical surfaces

(- -] [ -] 2
w(r) = &L I P(p)J,(pride - et [ P(p)dp + = (20)
E Jg E J, 2R

I S N R T

-

e N
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b where

'S - -]

P(p) = J rp(r)Jo(pr)dr
0

(b) pressure distribution at asperities

y tw(r)
p(r) = % erfc!»o (21)
2
i
: (¢) and for the load, F
§ F = J 2rrp(r)dr (22)
0

There are three unknowns: p(r), w(r), and Yo Where Yo is
the separation between the two mean lines of the surfaces.

One can numerically iterate using equations (20), (21), and

(22) to arrive at a solution for the particular set cf
variables used. It can be shown that for the special case
of perfectly smooth surfaces (0 = 0 - Hertz's problem) that

the solution is

1
i
H
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v1/2
- 2
p(r) = %-—25 1 - J%§ (13)
Ta . a
h h

where a, 1s the Herzian radius of contact and is

h

3nFR

11/3
T, =g = — (14)
“lo=0 h [ LE ]

When ¢ ¥ 0, one does not have a closed-form solution 1like
(13).
Non-dimensionalize equetions (20), (21), and (22)

with the average Hertzlan pressure, Pos where

. _F
Po * =2
Ta.

n

and with the Hertzian radius of contact, a The variables

h.
become

‘7’ = W‘E- ; - yOE
S = 2 T
p = H =

Py o

r

- r - e
r 8 = r = —

ah C ah
- oFE
g =

. ahpo

PPN
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One has, then, from (20)

o0 o0 2
W) - & l B(5)3,(Fr)ap - & ] P(F)ap + 4 72 (23)
E E
0 0
where
P(p) = I Fﬁ(?)JO(EF)dF
0
from (21)
- y -H?(;’)
p(r) = % erfc{ 0_ ] (24)
ovy2
and frem (22)
J rp(r)dr = .5 (25)
0

Thus the non-dimensional force is 0.5 and remains fixed
regardless of the choice of ¢ and ﬁ’ the only free parameters
for the problem in its new non-dimensional form. Using these
particular variables one sees that for the Hertzian problem

of contact between two smocth spherical bodies (0=0), the

, - . . " 0
. N B e ray e ol il SR e ~neo g L1 L

G [ - A wem, s 9% - b dere
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pressure distribution also is not a function of ¢ and H,

1/2

p(r) = 3 (1-F%) 7<1 (26)

The radius of contact in this case is

3
]
[

Thus by choosing this particular method to non-
dimensionalize the problem one fixes the solution to the
Hertzian problem regardless of load, radius of curvature,
etec. and then is able to examine departures from this one
curve due to the presence of asperities.

2.1.2 Solution

The solution is as follows: A first guess is
made of p(r) and placed into (23). This first guess is
the Hertzian distribution (26). The resultant y(r) is sub-
stituted into (24) along with a guess for 50. The calculated
p(r) is placed into (25) and 50 is adjusted until the inte-
gration yields a load equal to G.5. The accepted tolerance
is one percent. This final p(r) is compared to the first
guess and if they do not agree within a prescribed range
(1%) a new guess of p(r) is made which is a weighted average
of the original estimate and the result from (24). A flow

diagram is given in Figure 15.
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It was found that a particularly efficient way of

converging on the correct value of §0 was to use the following:
using ('570)i

= N
- - o load calculated
(y0)1+1 = (yo)i'+§ loge{: J - loge(true load)

— - "V

log, I FB(F)idF - loge(.S)
0

njal

= (¥g); *

The above iterative scheme was incorporated into a FORTRAN IV
program and run on an IBM 360/65. Convergence was achieved,
if at all, within five complete iterations.

2.1.3 Results

An example of the results that one can achieve
is shown in Figure 16 where p(r) is given against r for
various values of ¢ at one particular H. A different choice
of H would produce a different family of curves. It should
be noted that the behavior that was predicted by Figure 4 is
substantiated and one finds an increase in Fc and subsequent
decrease in p(0) with an increase in ¢. Presumably this
will affect hc(r) and, conseqguently, the overail thermal
resistance-of the interface.

A natural question to ask is: 1if various pressure

distributions, resulting from different pairs of o and H,

. - T - - . e | . S
L ¥ Y S WA s T T ¢ - A ] B e B e APy [ R <
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are ccr ired, how close will the distributions be to each
other throughout the range of T if they are chosen so as to
agree at r = 0? That is, given that

p,(0) = p,(0)

then will

o

p,(r) = p,(T)

Intuitively one expects the agreement to be good since the
curves start at the same level at r = 0, have the same
slope at r = 0 (symmetry of the problem), have the same
area underneath them (equation (25)), and probably have the
same general shape (an exponential-type decay as cpposed to
a sharp cut-off). No atterpt was made to determine if they
agree in a precise mathematical sense, but through observa-
tions of various sets of solutions it was found that the
pressure distributions do indeed agree with each other

over thelr range i1f thelr centerline values agree. An

example 1s shown in the table below. It was somewhat
difficult to pick a priori a set of g and ﬁ'which would
precisely yield a particuliar p(0), so some tolerance was

accepted for comparison.
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uniquely determined from ¢ and H. The relationship between

o 6.60 9.3 11.0
f H 10. 100. 1000.
r p(r) p(r) p(r)
0 .801 .806 .801
.2 .788 .792 . 787
A . 736 737 . 731
.6 .656 .652 .6Ul
.8 54T .540 .530
1.0 .408 406 «395
: 1.2 .283 .280 271
§ 1.4 .168 .169 .163
% 1.6 .082 .087 .085
% 1.8 .031 .037 .037
% 2.0 .009 .013 .01l
N Considering the allowed tolerances during the iterative
; solution, the agreement is excellent.
g The above allows one to conclude that all one
E needs to determine p(r) is p(0) which is, in itself,
g
{

o, H, and p(0) can be determined from the iterative procedure
mentioned above. Figures 17 and 18 show thils relationship
in two different ways. It should be noted thet either graph

could be used to reconstruct the other.
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A reasonable choice of physical variables indicate

that the expected range of H (or A") 1s
100 < H < 1000

and from Figures 17 and 18 it can be seen that in this range
p(0) is a strong function of ¢ and a weak function of H.
Therefore a further conclusion might be that the hardness
(H or H*) of the asperities has little effect on the final
pressure distribution and the assumption that the asperities
deform plastically is not a critical one.

A variable of interest 1s the radius of contact,
Pc. Recause of the conclusions drawn above, the radius of
contact can be considered a function of the centerline
pressure, p(0), only. The minimum value of ;c is when the

roughness is zero or when p(0) = 1.5. At this value r, = &

and Fc = 1. Since the pressure distribution for o #0 falls

off in an exponential-like decay rather than in a sharp drop as

it does for o = 0, there is no definite point where one can
say that ECFC) = 0, One must, instead, define tlhe radius

of contact in an arbitrary manner much like that in which
the thickness of a boundary layer is Jdefined. The criterion
used here 1s to define the radius of contact as the radius
at which the pressure is a certain percentage of the center-
line pressure. Three levels are considered: ten, five, and

one percent. In Figure 19 the relationship between ;c and
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p(U) i. shown for these three levels. One sees that a fifty
percent drop in p{0) leads to an ~ighty percent increase in
;c (at the 5% l-vel) and, therefore, over a two hundred

percent increase in the area of contact.

2.1.4 Discussion and Summary

In the introduction it was mentioned tnat the
problem of a rough spherical contact had been considered
before [62,75,68]; but, because of the ron-dimensional
variables which were chosen, the published results could not
be used for any arbitrary set of parameters. Whilc the
effect was demons rated, e¢ach change in governing parameters
required a ne solution. The main contribution here is that
all necessary Information is reduced to two figures: ore
such as Figure 17 or 18 which shows the relationship between
p(0) and 0 and H, and cne such as Figure 20 which is a
"master" graph and which shows the relationship between RS
p(r) and p(. By choosing the nroper p(0) from Figure 17
or 18 for a prescribed ¢ and H, one can determine the rest
of the pressure c¢istribution, p(r), from Figure 20.

Consider the following example:

Assume a wavy surface in the shape of a sinusoid of the

form

y = A sin(fx)

T A 5 il el 7

-—

The radius of curvature at a summit is
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Further..ore assume that the peak-to-trough height 1s 50+10

inches/inch or
A= 25-10'6 inches

f

21 cycles/inch

In this case R = 103 inches and

= 500 inches

If the material is steel, then

E = 30-106 psi

H = 3-10° psi

and

E = 51.7°10

i AN L = -

T 2 ik -»i‘»'i» e o

JE R —

C ..
wa@mwi PR



C e ———

- 60 -

If the applied load is 1000 pounds then
a, = .283 inches
pg = %000 psi
H=175
If ¢ = 32-10‘6 inches, then
o =1.46
and if ¢ = 150-10"6 inches, then

d = 6.85

From Figure 17 we see that

p(0) =1.3 at o = 1.46

p(0) .9 at o = 6.85

We can, therefore, predict the pressure distribution, p(r),

using Figure 20. For example we see that

e i
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6

6

o 32¢107° in. 15010~ in.
o 1.46 6.85
r p(T) p(r)
0. 1.3 .9
.5 1.13 .78
1.0 .39 Ll
1.5 0 .10
2.0 0 0
We can use Figure 19 to find that
G p(0) r, 1% T 5% T, 10%
1.46 1.3 1.28 1.20 1.14
6.85 .9 1.87 1.63 1.50

2orme P WP e AR st

PR R I & it

It is seen from the above that the effect of the
roughness 1is significant for values of waviness and roughness
which are common in mgnufactured products.

Although the non-dimensional variables used here
present, for the most part, a clear and general picture of
the problem, it is difficult with them to iImmediately see
the effect that the changing of the load has on the pressure

distribution, radius of contact, etc. One observes that

T o e
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. wl/3
ah F

A change in F will produce a weak change in H. Since the
results here are not strongly dependent on H in the first
place,onie can ignore any effect of F on H without too much
error in the final result. Then, from Figure 17, a decrease
in P which causes an increase in o, brings about a decrease
in p(0). Prom either Figure 19 or 20 one sees that the
original decrease in F which causes a decrease in p(0) also

increases ;c‘ But since

Te = 2nTe

and since & decrease in F causes a decrease 1in ay it 1is
uncertain how the product of these two variables changes

and, therefore, how the actual radius of contact changes.
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This section has shown
row in the contaet of two rough spherically shaped
surfaces the behavlior can be described by two
parameters, ¢ and H;
how the centerline pressure, p(0), determines the
remainder of the pressure curve p(r) with good
engineering accuracy;
how p(0) is a strong function of o, a weak function
of ﬁ, and not a function of any other parameter;
and how for reasonable values of material properties
and loads the eflect of roughness on the pressure

distribution can be significant.

In the following sections the above procedure

will be repeated for disks with and without center holes.

After this 1s done the resulting information on pressure

distributions for the different models will be converted

into data on contact conductance and the total thermal

resistance »f certain jJoints will be presented.

3,

s e
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2.2 Contact of Two Plates without Holes

2.2.1 Model

The model used for the contact of two plates

which do not have a center holé is the contact of two disks

of finite radius and finite thickness as shown in Figure 6.

It 1s assumed that

(a)
(b)
(c)

(d)

(e)

()

deformation of a disk with finite radius exists in the litera-

ture.

the disks deform elastically;

asperities deform plastically;

asperity height distribution above a mean plane is
Gaussian;

asperity contact is normal with no tangential
component ;

the contact (i.e., pressure distribution and defor-
mation) will be symmetric about an axis through the
center of the area in contact;

both disks have the same dimensions, material
characteristics and loading distribution.

As mentioned before, no solution to the elastic

The method used here to find such a solution 1s an

infinite Fourier-Bessel series technique. A detalled

description is given in the Appendix and only a brief outline

of the procedure 1s presented below to indicate the general

nature of the solution.

Fourier series analysis 1s used successfully in

the solution of the Laplacian
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in potential fleld problems because it is relatively easy toc
pick the final solution, save for constants, out of the
family of possible solutions. This 1is largely because there
is only one condition to satisfy at any boundary. A problem
in elasticity, however, requires the solution to a biharmonic

equation,

The biharmonic not only introduces a larger family of solutions
from which to choose,but it also requires two conditions to

be satisfied at each boundary. The sum effect 1s to make it
difficult if not impossible for one to choose out of the
avallable solutions the particular one which will satisfy the
given boundary conditions, of which there are eight in an
axially-symmetric problem. It is not difficult, however, to
choose a solution which will satisfy four boundary conditions,
two of which are on the same axis and are a homogeneous palr.
The technique used with multiple Fourier-Bessel series 1is to
divide the problem into parts where only four boundary con-
ditions are required. By superposition the sections are
reunited into the original problem. Further explanation and
an exaanple are feund in the Appendix along with the solutlons

to varicus problems used in this paper.
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Suffice it to say that cne can obtain solutions in

the form

@ [ -}
o, =a,+ } af (r,z)+ J b f (r,z)+...
z 0 =g m17° me] B 27°

The first term, ags is the zeroeth term and is th~ average
value of the unknown (e.g., oz). The remaining series are
the Fourier-Bessel expansions which have an average value of
zero 1n the homogeneous direction. In the body of this report,
the solutions are presented in shortened parametric forms,
the full expansions of which can be found in the Appendix.
There are two possible areas of difficulty in using
an infinite series solution to the elastic problem: if con-
vergence is nct rapid a numerical result will be difficult
and expensive to get; and, since the infinite series used
here are superpositions of oscillating functions, a numerical
result will be in the form of an oscillation superimposed on
the average value. The larger the number of terms, the greater
the frequency of oscillation. A deflection calculated with
such an infinite series, for example, would not predict a
smooth continuous surface but a wavy one. Thus when one
introduced the presence of asperities, the mathematics would
not recognize the waviness as a spurious oscillation but

would consider it as a true representation of the surface.
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Both these problems can be overcome by using
truncation terms, tn’ in a finite series so that one would

have

N
+ } t.af.(r,z) + ...
n=1] DD 1

az-ao

instead of the original infinite series. Since the average
value of each term in the serles 1is zero iIn the homogeneous
direction, the truncation term does not alter the average

value, ags of the variable - here ¢ The truncation term

z"
allows cne to use only N terms in the series and dampens out
the oscillations by decreasing the effect of higher frequency
terms. The net result 1s to make the predictions as smooth
and continuous mathematically as they are physically. The
truncation terms are discussed further in the Appendix and
in [88].

With the above in mind, one can state that for

the problem shown in Figure 6, the governing equations are:

(a) deformation c¢f solid disks

;(;) = 27[r,a,r0’5(;)] - za[r,a’rosa(;)J - zg[r’a’rO’B(;)]

(27)
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(b) pressure distribution at asperities

p(r) = 5 erfc|——— (28)
ay2
(e¢) and for lcad
a o ;g
rp(r)dr = -5 (29)
0

The above are written directly in non-dimensional

form. The variables are

F = H 5 = IE
0 ﬂr2 Py 0
0
y.E
S = P R
- P P, Yo 53;
r
S = _C = . VWE
e ™ w bp,,
r
r*5% o * 70

The difference in the non-dimensional variables between the

above and that used before is that the radial variables are
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divided by the disk chickness rather than the contact radius.
Also, in equation (28) the factor "2" appears because w(r)
is the deflection for one plate only.

The above set of equations 1Is solved in exactly
the same way as was done for the spherical surfaces. However,
rather than present the solutions at this point as was done
in the previous section, the midplane stress of a disk, the
classical solution to the contact problem, will be discussed.

2.2.2 Midplane Stress

The midplane stress of a disk of thickness 2b has
been used before as the interfacial pressure distribution for
the contact of two smooth disks of thickness b each [79,80].
Tt was shown by Gould [83] that this approximation overesti-
mates the actual radius of contact. It is useful, however,
to examine the midplane stress distribution so that one can
ccmpare published results with those calculated here, thus
~.adicating the accuracy of the methods used here. One can
also investigate behavior common to the contact problem without
the complexity of the contact problem since an effect that is
apprecliable to one should be appreciable to the other.

For the model shown in Figure 21a and the boundary

conditions
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T =0
rz

r=20 stresses finite

the midplane stress is

Q
N
=1
o

I (EET) + (.85 (30)

o]
o
N
o)
[

the midplane stress then becomes

Q
N
mlodrla

+ 7 (F,3,7.) (31)
"0lz0 3 ’

Q1

As is shown in the Appendix, at large a equation (31) is
equivalent to those equations used in [79,80] which were

derived using Hankel transforms for a disk of infinite radius.
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If one compare: the results for large a from (30) or (31) to
those published, one can estimate the accuracy of the multiple
series method ured in this report. Fortunately,access was

had to the computed numerical output used in [80]. The
agreement between (30) and the data from [80] is excellent.
This is, o? course, to be expected since at large a (30) is
equivalent "o the formula used in [80]. PFigure 22 shows the
midplane str.ass distribution for various values of ;0 when a
is sufficiently larger than ;0 as to be considered infinite.
Just how mucn larger this must be will be discussed later.

An immediate observation made from Pigure 22 is that
the curyes for Fo = 2 and Fo = 3 are remarkably similar and
seem to be linear translations of each other over a wide
range. It was found by comparing different numerical solu-
tions that for ry>2 the curves for different r, are similar
for F>Fo - 1. The stress di:“ribution in this range 1is
shown in Pigure 23. ¥or values of ?0>2, therefore, one can
reconstruct the midplane stress distribution without resorting
to equations sueh as (30) or (31).

Another observation 1s that 1f one draws a tangent

to the curve at * = r,. and then extends this tangent so that

0
it intersects the abscissa, one has an estimate of the radius
of contact for the actual case of two contacting disks which

is close to ~hat piredicted by Gould [83]. The prediction is

;c =T, + 0.65 (32)

= g El o b b B AT s e
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which compares favorably to that obtained in [83],

r =r, + 0.50 (19)

c 0

Thus an estimate can be made of the contact area from the
midplane stress curve by not only neglecting the tensile
stress zone but by also ignoring the flairing of the distri-
bution immediately before this 2zone.

A question asked earlier was how much greater does
a have to be than ;0 for the disk to be considered to be of
infinite radius? Or, stated in a different manner, for a
fixed ;0’ how does ¢,/p, change as a increases? For a = ;O
the pressure distribution is trivial: ¢,/Pg = -1. For
5>>Fo the pressure distribution is like that shown in Flgure
23. How the transition occurs from one to another 1s shown
in Figure 24. It is assumed that any EO can be chosen to
investigate the effect of changing a and the results will
be éommon to all values of ;0 (except possibly for very small
ones which are not of much practical interest). The parti-

cular one used here for comparison is ;O = 1.

As is shown in Figure 24, when
a > ir,

no further change occurs to the midplane pressure distribution

in the entire range. When
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no further change occurs iIn the reglori where the stress is
compressive: 1.e., all differences between curves for
dift'erent values of a are in the region of tensile stress.
Thus one can assume that if a > U;O,the disk may be considered
to be of iInfinite extent and any boundary condition at the
edge r = a can be ignored. If a is large enough, therefore,
one can use equation (31) in calculating the midplane stress
rather than equation (30), which 1is the exact solﬁtich: " Since
equation (30) has two infinite series whose coefficients must
be solved for simultaneously and since equation (31) has Jjust
one series with no need for simultaneous solution of coeffil-
clents, 1t is both more convenient and less expensive to use
(31).

The last concluslon to be drawn from the work done
on the midplane stress is that Poisson's ratio does not affect
the stress distribution in any way. This can be seen from
(30) and (31) which are not influenced at all by v.

The conclusions drawn, then, from the study of
midplane stress distribution of a disk of thickness 2b are:

(a) +the methods used here to solve the elastic deforma-
tion of a thick disk of finite radius are accurate;
(b) an estimate of the contact area can bé made by

extending a tangent from the curve at r = ?0 to the

abscissa;

e ‘nmb‘am;tdw e
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(¢c) for 50 > 2 and for large a, midplane stress distri-
butions for different ;0 are merely linear transla-
tions of each other;

(@) 4if a > Ur, the boundary conditions specified at
r = a can be ignored without error and the simpler
governing equation can be used;

(e) Poisson's ratio, v, does not affect the midplane
stress distribution.

Now that the classical single-body contact model
has been examined, we shall return to the two-body model,
Figure 6.

2.2.3 Solution

The solution to the contact of two disks where
the roughness is allowed to alter the pressure distribution
is achieved using the same procedure as was done for the
spherical surfaces. The flow diagram given in Figure 15
cin be used here with the substitution.of equation numbers
(27), (28), and (29) for (23), (24), and (25). The same
algorithm is used to calculate §0.

Some difficulty is encountered, however, in the
solution for the disks which 1is not found 1n the case of
the spherical surfaces. In the latter there 1s an original
curvature to the surfaces which rapidly enlarges the gap

between the two bodles and quickly reduces the chances for

asperity contact at any appreciable distance from the original

radius of contact. In the former the gap 1s relatively
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narrow .ith no original curvature to superimpose on the de-
flection. Thus the effect of the asper] 1les is more pro-
nounced than that found with the spheres, and any oscilla-
tions which occur during the solution take longer to die
out. When iterating for the contact between the two disks,
it becomes important to choose the proper initlal stress
distribution and the proper weighting parameter for subse-
quent estimates of pressure distributions.

Otherwise the proczdure is the same as before:
guess a p(r) and substitute 1t into (27); take the subsequent
deflection, w(r), and place that along with a guess for §0
into (28); adjust the §0 in (28) until the p(r) it predicts
satisfies (29); and finally, compare this p(r) with the
original and, if different, take the welghted average and
start again. A computer program written in FORTRAN IV for
the IBM 360/65 which will perform the above is listed in
the Appendix.

2.2.4 Results

Unlike with spherical surfaces, all data concerning
the contact problem of two disks cannot be expressed by one
master graph. There are too many governing parameters: o
and H as before and now ;0 and a. Physically, though, one
can expect a to be much greater than FO; and, from the con-

clusions drawn in the previous section on midplane stress,

one can treat the disk radius as infinite and rno longer
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consider it a variable in the problem. This leaves o, H,
and ;0' Unfortunately no further reduction can be made.

For one particular 50 one can plot the pressure
distribution for various values of ¢ at one H., By changing
H and comparing two different distributions caused by dif-
ferent values of ¢ and H but having the samre centerline
pressure, S(O), one again sees that the distributions match.
Cne can then plot p(0) versus ¢ for different values of E
and observe that p(0) is, as before, a strong function of
0 and a weak function of H. Since p(r) is determined solely
from p(0), one can pict Fc versus p(0) for differeni percent-
age levels. This is all the same as was done before e¢xcept
now it has to be repeated for each value of ;0‘

Data for three values of FO are shown in subsequent
graphs: FO = 0.5, 1.0, and 2.0. In Figures 25, 26, and 27
the change in pressure distribution with changing ¢ is shown
at one value of H. There is no daca for the contact of two
smooth disks without holes as there is for spherical surfaces
or for disks with holes [83]. But estimates can be made
using the conclusions drawn from the midplane stress curves
given 1in section 2.2.2. These are shown ‘" the figures as
dashed lines and serve as a rough guide to the effect that
roughness has on the distribution.

The immediate observation made is that the effect
of roughness on disks 1s much more pronounced than that

already shown for the spherces (¥igure 16). This 1is to be
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expected since the original curvature of the spheres draws
the two surfaces apart quickly and removes any possibility
for contact. It should also be noted that the range of o

which influences the distribution changes markedly for each

r,: for Fo = 0.5 it is 0.1 < 0 < 1.0; for r

1.0 < 0 < 10; and for r

0" 1.0 it 1s

o= 2.0 it 1s 10 < ¢ < 100. Again

this is not unexpected since a larger r, implies a thinner

0
plate. A thinner plate has greater deformation and requires,
therefore, a larger asperity height to cause the needed
interference.

These three figures are all for a specific value
of H. 1If one recomputes the stress distributions for other
values of H and then compares two curves with the same value
of centerline pressure, p(0), but not necessarily the same
values of @ and H, one finds here as with the spherical

surfaces that the distributions lie on each other. That is,

if

p,(0) = p,(0)
then for all r

p,(r) & p,(F)

Following the same procedure as before, one can graphically

illustrate the relationship between p(0), o, and H. This
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relationship 1s shown in Figures 28, 29, and 30. Since it
is found again that p(0) is a strong function of ¢ and a
weak one of H, only one representative value of H 1is used

in each figure, H = 100. In Figure 29 (that for r, = 1.0),

0
however, the p(0) - ¢ curve for H = 10 is also shown so as
to demonstrate how the behavior here does parallel that
shown in Figure 17 for the spherical surfaces.

Since ¢ and H determine p(0) uniquely and since
p(0) determines p(r), one can again plot the radius of contact,
Fc’ versus p(0) without any other parameters. For the same
reasons as those discussed before, the contact radius is
arbitarily defined at three levels: where E(Fc) is 10% of
p(0), 5% of p(0), and 1% of p(0). The results are shown in
Figures 31, 32, and 33. The same general behavior is shown
here as in Figure 19 for spherical surfaces except that in
the case of two disks the curves separate from each other
much more rapidly as p(0) decreases than they did for srheres.
This is, again, because of the greater influence that the
asperities have in the gap between the disks “han in the
gap between the spherical surfaces.

In section 2.1.4 an example was given to demonstrate
how the resul.s there could be used. The procedure here is
the same. If one had 50 = 1 for example, one would calculate
o and H and go to Figure 29 to find the centerline pressure.
With this value of p(0), one can go to Figure 32 for ;c and

to Figure 26 for p(r). The latter can be used as a master
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graph regardless of the labels on the indivldual curves as
long as the curve with the proper p(0) is chosen.

2.2.5 Summary

These previcus sections have shown that the effect
of asperities on the contact of two disks without holes is
similar to the effect orr the contact ¢f two spherical surfaces.
In the former, however, it is much more pronounced and the
radius of contact for the disks increases with increasing
roughness at a greater rate than it would :'or the spheres.
This, itself, has significance for the thermal contact
problem for it 1s precisely this increase in ;c which 1s
of importance.

It was also shown how the elastic deformation
solution used in this report can be considered as being
accurate 1f it 1s compared to existing data in the literature
and i1t was also shown how various parameters such as Poisson's
ratio influence the final result.

One difference between the information presented
here and that given earlier for spheres is that an extra
parameter, ;0’ is needed. This leads to a family of curves
rather than the single one used before. This is mostly Just
an inconvenience, however, and the basic behavior remains
the same.

The next section will repeat the procedure followed
for the spherical surfaces and for the disks without holes,

but this time for the contact of two disks with center holec.
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2.3 + ~tact of Two Plates with Center Holes
3

.1 lodel

The model used for the contact of two plates with
a center hole is the contact of two disks (with center hole)
of finite radius and finite thickness as shown in Figure 7.
It is assumed that
(a) the disks deform elastically;
(b) asperities deform plastically;
(c) asperity height distribution above a mean plane is
Gaussian;
(d) asperity contact is normal with no tangential component;
(e) the contact (i.e., pressure distribution and deforma-
tion) will be symmetric about an axis through the
center of the area in contact;
(f) both disks have the same dimensions, material char-
acteristics and loading distribution.
Again, no solution for the elastic deformation of
the disks exists and the multiple infinite series technique

described before is used. The boundary conditions are

at z =D 0, = =Py c<r<rO
g, = 0 r0<r<a
Tpg = 0

at z =0 G, = -p(r)
T =0

rz



at r =c 0, =0
Tz = 0
at r = a 0, = 0
T =0

The desired result 1s the deflection at 2

0 due to the
applied pressure, p(r). As before, it will be assumed
that a >> r, and that all boundary conditions at r = a
can be ignored. It willl also be assumed that the

boundary condition

can be ignored. This is done for expediency's sake and the
error involved will be discussed later.
The governing equations are, then,

(a) deformation of solid disks

G(F) = Z [;s;o:agagﬁ(;)] - Z [;3;0365595(;)3 (33)
14 15

(b) pressure distribution at asperities

[§0+2W(F) (28)
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(¢, and for load
|, PR - N (34)

The same non-dimensional variables are used here

as were used in 2.2 with the addition of

ol
"
oo

A digression will be made here, as was done pre-
viously, to study the midplane stress so as to gain insight
into the overall problem.

2.3.2 Midplane Stress

Here we examine the midplane stress of a disk of
thickness 2b. As with the disks with no center holes, this
stress has been used before as an estimate of the interfacial
Fressure distribution in smooth two-body contact problems.

For the body shown in Figure 21b and the boundary conditions
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the midplane stress is

Note that the boundary conditions at r = a have not been
used. It has been tacitly assumed that a is sufficiently
greater than FO (1.e., §>u50) so that the outer edge may
be assumed to be at infinity. This is physically reasonable.
Results from (35) are compared to data in the
literature, notably the work of Could [83], Bradley [84],
and Fernlund [87]. The first two solve for the midplane
stress using a finite element analysis; the latter uses a
technique similar to that used here but somewhat less
rigorous in application. Agreement between the results
computed here from (35) and those from [83] and [84] are
excellent (sce Figures 34 and 35); agreement with that
from [87] is poor. This is because the boundary conditions
at r = ¢ are ignored in [87] while they are satisfied in

the others. More on this will be discussed later.
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Another parameter, the hole radius, has been added
to those used before. Rather than consider all possible
combinations of hole radii and load radii, three specific
values of ¢ are used: ¢ = 1.0, 0.5, and 0.25. In Figures
36, 37, and 38 the midplane stress as calculated from (35)
is shown for these values of c¢c. The general behavior is
much like that shown in Figure 22 for disks with no holes.

If one extends the tangent to the curves at the
load radius, 50, to the absclssa, 7ne observes that the

estimated radius of contact for vaiues =f FO > 0.5 is

‘0 + 0.5 (36)

which is exactly that predicted in [83] for smooth two-body
contact. One can, therefore, use the modified midplane
stress distribution as a rough guide to the pressure dis-
tribution in the two-body problem.

Another observatiop to be made is that for large
;O the results for a disk with a center hole approach those
for a disk without a center hole. This 1s not unreasonable
since the effect of the presence of the hole will die out
with increasing radius. The effect of the load is felt in

the region immediately after its furthest extent, T If

Ol
FO 1s far enough removed from c,the two effects will not be
superimposed upon each other. In that case the presence cf

the hole can be ignored.
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At the beginning of this section the toundary
conditicns which lead to (35) were listed. It was noted

then that the conditions at r = a were ignored. If one

also ignores the boundary condition

]
"
Q
Q
"
o)

at

o, Fg - 3 P GEEa)
= Z oa — ¢ (r,r.,c,a
Pol-_, a2-z® 10 077

(37)

Since this has one infinite series, nc simultaneous solution

of equations 1is needed in order to find the Fourier-Bessel
coefficlents. One also sees that results from (37) agree

closely with those from Fernlund [87] and disagree with

those exact solutions presented earlier. As 1s expected the

disagreement 1s in the region immediate to the hole.

(37)

4 (0.) # 0
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Thus the dropping of the boundary condition leads one to
force the stress distribution to have a zero slope at the
hole edge rather than its normal slope. Figure 39 shows an
example as calculated from (37) and from [87] and the true
distribution as given by (35).

The reazon for introducing (37) is two-fold:
first to explain the disagreement to Fernlund's data (which
is done above and secondly to Justify the dropping of this
particular boundary condition in further work. The ultlimate
goal in this report 1s to see how the pressure distribution
changes with the presence of asperities and, in doing so,
how the contact conductance changes. The most critical
region for this purpose is the ontermost one in the neighbor-
hood of r.. This 1s the region which goes from zero conduc-
tance to a finite conductance when asperities are considered.
However small the conductance might be, in a typical case
(Figure 53) it allows a short cut for the heat to travel to
avold the bulk material in the center. As can be seen from
Figure 39, the disagreement in this region, between (36)
and (37), the "exact" and "approximate", 1s not great. It
1s only near the center, which 1s relatively unimportant
for our needs, that the difference '!s substantial. There-
fore, for the purposes of this thesis, the dropping cf the
boundary condition at the hole 1s not crizical even though
it might be so in other circumstances: for exanple, in an

investigation of the maximum stress point near the hole.
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One might also consider that the boundary condition
of zern normal stress in the hole may not be an accurate de-
scription of the conditions in the hole 1n the first place
since there may be shear or compressive forces due to the
bolt, for example. This further reduces the importance of
this particular boundary condition.

The work, then, on the midplane str:ss has shown
the same general behavior evidenced previously and has demon-
strated the effect of ignoring the normal stress in the nole
when calculating interfacial pressure distributions. It was
also shown that an estimate of contact radius for smooth
two-body contact could be made using the midplane stress
solutions and that this estimate agreed with that from [83].

2.3.3 Solution

The three governing equations for the contact of
two disks with a center hole (Figure 7) are: (33), deforma-
tion of the disks; (28), pressure distribution at the asper-
ittres; and (34), total load. As mentioned before, (33)
ignores the boundary condition of zero normal stress within
the hole and assumes that a >> 50 so that any boundary
condition at the outer edge can be ignored. The Jjustification
for both assumptions has been discussed earlier.

Again the flow diagram given in Figure 15 can be
used to arrive at a compatible set of w(r), p(r), and Yo
Equations (33), (28), and (34) are substituted for (23),

(24), and (25) respectively. The same difficulties arise
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in the olution as those discussed in section 2.2.3 for
the disks with no center hole. A computer program which
will perform the proper iteration sequence 1s listed in the
Appendix.

2.3.4 Results

In order to describe the interfacial pressure
distribution for spuerical surfaces, one needs two parameters,
0 and H; for disks with no holes, three: o, H, and ry (a
being ignored). 1In the present case for disks with center
holes one needs four parameters: o, H, ;O’ and c. As before,
only one H is considered since it has such a weak influence
on the final result. Rather than attempting to present data
for many combinations of o, EO’ and c, only three sets of ;O
and ¢ are used. These are all physically reasonable values
and lie within the range of practical interest. Results
from Gould [83] are used for the zero-roughness distributions.

In Figures 40, 41, and 42 the same behavior as
seen before 1s shown. As with the disks with no hole,
different ranges of ¢ affect the final distribution for
diflerent sets of ;O and c. The non-dimensional load is
Pg - 2° and as this value increases, the 7 needed to change
the pressure distribution increas«s. Silnce the normal stress
at the holes 1s not accounted for in the solution, all the
p(r)-curves have zero slope at the hole wall. This is
incorrect, of course, and a more exact estimate might be

made by extending the linear portion of the curve (in the

neighborhood of P=FO) directly back to the ordinate.

N N .
PR e T T g . ~ [y
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In the previous two models it was noted that the
centerline pressure determines the rest of the curve: 1i.e.,
knowing p(0), one knew p(r) for all r. Here, of course,
there 1s no "centerline" and one has to use another reference
point. The first one that comes tomind is the hole edge,

r = c, and one does find that fcr various values of G and
H the distributions willi match if the pressure at the hole
edge matcnes. Therefore if p(c) is known, p(r) 1s known.
But since the solutions are developed with an assumption
that causes an error in the curve in the region immediate
to the hole, it would be better to choose another reference

point. A logical one is the load radius, r At this

0°
distance from the hole the approximate profile has almost
Joined the exact one (see Figure 39). The disadvantage in
using 50 as the reference point is that the separation
between curves 1is less here than at the hole edge and
possibility of error is greater. Figures 43, 44, and U5
show p(FO) versus 0. While these curves strictly pertain
to one ﬁ, they can be extended over the range'with little
error.

Here, as before, the radius of contact 1s a func-
tion only of one point on the pressure distribution, 5(?0).
By defining the contact radius at different levels, one can
agalin show the change in contact radius with decreasing

5(?0) and, therefore, with increasing roughness. The curves

shown in Figures 46, 47, and 48 behave much in the same
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manner as those given for the previous two models. Unlike
the previous two models, however, the reference point used
is not the innermost one but the load radius, ;0' This is
consistent with the previous sets of data.

2.3. Summar,

All the information developed in this section
parallels that presented before. With the model described
in 2.3.1 it was shown that increasing the roughness {(here
0) does have a substantial effect on the pressure distribu-
tion and the radius of contact. The midplane stress for a
disk with a center hole was investigated and results were
found which agree with data in the literature developed
with numerical techniques. An approximate solution was also
presented which ignored the boundary condition of zero normal
stress within the hole. The results from this solution fell
below those from the exact one in the region immediate to
the hole but at and beyond the load radius, rys the two
solutions produced similar results. The midplane stress
solutions also enabled one to predict r, for the smooth
two-body contact problem which agreed with that in the
literature. |

Specific values of 50 and ¢ were chosen and the
same type of curves were generated for these as was done
before: the pressure distribution for different values of
roughness; the reference point pressure, 5(50), for a
particular value of H at varying 0; and the contact radius

at different r. ference pressures.
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At che end of these three sections, then, one has
the pressure distribution, p(r), as a function of the various
parameters governing each particular modei. Using equation
(3) one can now predict the local contact conductance at the
interface. KXnowing hc(r) one can calculate the entire
thermal resistance of the particular system. In section 3
this is what is done.

Before proceding to that, however, some experimental
observations corroborating the conclusions drawn in this

chapter will be presented.
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2.4 Experimental Cbservations

This sectlion describes the experimental work done on
bolted disks. The basic difficulty in measuring the con-
tact in a bolted joint is to avoid disturbing the contact
with the measuring devices. Traditionally in smooth, two-
body contact, there are two parameters of interest which

are to be measured: the radius of contact, r and the

e?
pressure distribution, p(r). The most common way of mea-
suring either of them is with penetrating o0il with or
without an intermediate substance to act as a capiilary
medium [53,59,87]. Agreement with theory using this method
has been claimed to be good. The theories used, however,
are approximate and in the best of the three [87], the
agreement with the exact solution near the hole is not
good. Thus one might conclude that these experiments with
the o0il would be useful in predicting the general trend
of the distribution but not useful for calculating actual
numerical values. There 18, after all, the hydrostatic
effect of the 0ll between the plates and no estimate of
its influence on the pressure distribution has yet been
made,

A better way, perhaps, to measure the interfaclal

pressure distribution 1s through photoelasticlty. This

guarantees that no foreign material which could influence
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the distribution 1s placed in the interface. This method
was uc:d successfully in [84] but it was felt that the
accuracy in determining the pressure distributlion was no
better than 10-15%. It was also found to be impossible
to measure the radilus of contact uslng this method. A
further disadvantage 1s that only one type of material
can be used 1n a photoelastic experime .

Common to all techniques which attempt to measure the
interfacial pressure distribution 1is the lack of knowledge
of the load distribution in actual practice. All the the-
ory presented in this paper (and others also) assumes that
the load 1is constant up to a given radius and then zero
afterwards. In an actual experiment, especlally where a
torqued bolt 1is used, 1t is doubtful that one can predict
apriorl what the distribution will be. And, to measure
the load distribution involves the same problems as does
measuring the interfacial one. Therefore with any of the
techniques suggested to date, it would be difficult, if
not impossible, to measure the interfacial pressure dis-
tribution with any precision.

In measuring the radius of contact one can avoid dis-
turbing the original distribution even with the penetrat-
ing o1l technique. But this 1is subject again to the vagar-
ies of the actual load distribution, soak tiwe, capilllary

flow 1n the narrow gap, etc. Another way of measuring the
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radius of contact is to take the two disks in contact and
gotate them (about the axis of the bolt) with respect to
each other, Where they are in contact they will rub;
where they are not in contact, they will not. The tran-
sition from one region to the other is the radius of con-
tact. The worn area 1s visible and can he measured. Or,
if one of the plates 1s wade to be radioactive, the radio-
active material transferred to the other plate by rubbing
can be recorded photographically. In elither case the
radius of contact can be measured. This was done in [83]
and the results were consistent with the theoretical work
done there. Again, since the load dist *ibution 1is not
known exactly, one cannot expect to arrive at a precise
value for r. but just confirm the general behavior.

The experimental work done in this report uses the
rubbing technique described in [83]. It is limited to
demonstrating the overall effect on contact radius that
the asperitles have and not to arriving at a precise value
of Toe Stnce, theoretically, the pressure distribution
in the presence of 2sperities nev.r gevs to zero, there
is noc radius of contact as such, Before, when dealing
with the theoretical curves, one delfined the radius of
contact at different pressure levels: e.g., r,=T where

p(r)=10#%p(0). In the rubbing experiment, then, one might

expect tc see wear marks on the entire surface of the
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dlsks but with decreasing frequency as one got further
out o; the radius away from the center hole. This is in
contrast to the sharply deflned contact area for the
disks when the surfaces were smooth.

The disks used 1n the rubblng tests are made from
304 stainless steel and are four inches in diameter. The
hole radius 18 in the neighborhood of 1/8 inch and the
thicknesses used are 0,117", 0.250", and 0,304"., The

actual disk dimensions in nondimensional terms are

disk pair a )
number
1 17.1 1.128
2 8.0 0.512
3 6.6 o.424

The disks were first machined and then annealed.

After annealing they were ground flat to 0.0002 inches

6 inches.

and then lapped flat to better than 10°10°
After lapping 1t was found that the roughness as measured

on a Talysurf was

6

C.L.A, = 5¢10 " inches

or, for each disk,

6

o = T7.26°10" " inches
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Material properties of the disks are

E = 29'10+6 psi

+4

H=26,7-10"" psi (Vickers)

Each disk was fastened to 1ts mate and joined through the
hole by a 1/4-20 bolt. Cylinders were placed on the bolt
on elther side of the disks. These were of greater radius
than the TEFLOﬁE)washers to 1lnsure as uniform a load over
the washers as possible. Compliant washers were used so
that any irregularities that might arise between cylinder
and disks would die out. Figure 49 shows the experimental
setup,

The apparatus described in [83] was used to insure
that the disks do not turn with respect to each other
while the nuts are tightened to a specified torque. The
torque on the nut was translated into a load on the bolt
by use of a chart developed with Belleville washers. A
Belleville washer 1s a spring in the shape of a washe:
where the outer rim is in a different plane than the
inner. Upon compression the washer flattens out. The
force-deflection curve for a particular washer 1s known
so if cne measures the deflectlion caused by a particular
torque, one knows the torque-~force relationship. The
particular washer used was Associated Spring Corporation
Belleville washer #Bl1000-073. It was found in a series

of experiments that the results were repeatable.
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After turning the disks with respect to each other,
the nuts were locsencd aud the interface was visually
examined for the extent of wear. At first the experiments
were done for the smooth, two-body contact problem to
verlfy the general procedure. Afterward they were repeated
for disks wlth roughened surfaces,

It was expected that for the case of roughened sur-
faces 1t would be difficult to see the wear marks on the
disk surface and that some method of enhancing these
traces would be needed. It was found that 1f one covered
one of the two disks with a dye the traces would show even
under the lightest of loads. The dye used was Dykem Steel
Blue, the dye used by machinists for scribing. A very
dilute solution was used so as to have as thin a film as
possible. The problem to avold, of course, 1s having the
film interfere with the pressure distribution at the inter-
face and altering the results, If the fillm 1s thin enough
it 1s felt that the properties of the surface will indeed
be those of the main body underneath. For this reason the
rubbing experiments for the smooth disks were tried with
and without the dye present. The results for both cases
agreed with each other and with that given in [83]. Pig-
ure 50 gives the data found for Fé versus ?6 and compares
it to both the data and theory from (83]. There, it was
claimed that
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T, =T  + 0.5 (19)

There 1is scatter, of course, in Figure 50 but the data
does seem to correlate with (19) better than it would for
other estimates such as that of Greenwood, for example,
equation (18). Again, since 1t is difficult to control
the load distribution, the data cannot be considered to
be an absolute proof of (19).

Using the above technique it 1s possible to see the
effect »f asperities when elther of the two disks are
roughened. One of the two disks of a pair 1s subjected
to a sandblaster until the required roughness is achleved.
The other disk 1s coated with the dye. The two are then
Joined and rubbed together as before. When they are sep-
arated one sees that the lmprint left behind is different
than that when both disks were smooth. Before, the rubbed
area was uniform and completely worn up to the radius of
contact which was falirly well defined. Figure 51 shows
such a pair both with and without the dye. With the rough
disks the rubbed area consists of a series of scratches,
the number of which decrease 1n density as one gets further
fom the center hols. In this case there 1s no specific
radius of contact, Thlis agrees, of course, with the con-
clusions drawn earlier. In sections 2.1, 2.2, and 2.3 it

was recognized that in theory the interference between the
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a) Smooth disk used in rubbing experiment - polished area

in center is worn area

») Smooth disk with dye used as mate to the above

FIGURE 91
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two surfaces would not stop at a varticular point but
would continue indefinitely. That is why the arbitrary
percentage levels were used in defining the radius of
contact when asperities were present. In the experimen-
tal work no attempt was made to correlate the number of
scratches per unit area at a particular radius with the
pressure level which caused it. Therefore no prediction
of r, at a particular level can be made.

One can, however, 1llustrate the effect of the asper-
ities by taking the three disk pairs and subjecting them
to the same load. If the parameters are chosen carefully
one can achieve values of ¢ which affect some pairs and
do not affect the others. It was found that a torque of
6C in-1bs (equivalent load of 650 1lbs) applied over an
annular area of outer radius 0.455" and inner radius 0.125"
would produce such an effect. The results are shown in
Figure 52. The only difference between the three runs was
the disk thicknesses, which were 0.117", 0.250", and 0.304".

6 in. which 1s,

The average rms roughness averaged 170°10°
of course, an extremely rough plate. One expects that the
thinnest plate will deflect more than the thicker; 1ts gap
will be wider and, therefore, less interference between
asperities will occur. From Figure 52 one sees that for
the thin disk, b=0.117", the wear marks are concentrated

tightly toward the center. For the other two they are
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significantly more spread out and the scratches extend
outwards even to the edge of the disks. The significant

parameters are

disk pailr

number c E% 3
1 1.128 3.89 Lo
2 0.512 1.82 16
3 0.425 1.50 17

No distributions were calculated for these speciflc values
tut for disk pairs #2 and #3 it can be seen from Figures
41 and 42 that a ¢ in the neighborhood of 16 will lower
the stress profile significantly. For disk pair #l, since
?O is so much larger than ¢,one might ignore the hole and
examine the data given in Figures 25, 26, and 27 for disks
with no hole. Even though curves fcr ?6=4. are not given
it 1s not unreasonable to expect that the range of ¢ nec-
essary to affect the pressure distribution will 1lie above
o=U0,

In summary, therefore, although the experiments per-
formed were not able to quantitatively verify the analyti-
cal predictions given earlier,they did corroborate quali-
tatively the expected behavior and did show how the non-

dimensional roughness, o, does control the behavior of the

contact.
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3. HEAT TRANSFER EXAMPLE AND EXPERIMENTS

In the introduction 1t was mentioned that one
cannot determine an overall contact resistance for an
interface without dzscribing the system of which the
interface is a part. The best that one can do 1s present

an equation such as (3)

k tan © Eq.985

hC = 1.45 5 q

(3)

which will describe the conductance at a particular point.
Any futher consolidation of information is at the expense

of generality. In this section the possible thermal effects
of the phenomena investigated and discussed previously will
be demonstrated by use of a specific example: the total
thermal resistance of a disk like that shown in Figure 53.
For this case the radius 1is five times the thickness, or

a = 5. The thermal boundary conditions are:

at 7z = 0 k 3T = h (r)[T-T,]
z =b kg-Tz-ao
r=0 k $2 = 0
r=a k %% = q

The varticular value of hc(r) used depends on the pressure

distribution chosen from previous examnples. The presence
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of the hole can be included by allowing hc(r) = 0 for
r < ¢. Three groups of p(r) at z = 0 are examined: those

for Fo = 0.5, ¢ = 0.25; Fo = 1.0, ¢ = 0.5; and Eo = 2.0,
¢ = 1.0. For each of these groups the different interfacial
stress distributions caused by different values of 0 are
used. The desired result is the resistance of the system

defined as

T(r = a, z = b/2) - T,
R = -
c q/A

Since the temperature level 1s unimportant, Ti is set
arbitra.ily to zero. It 1s also assumed that the exponent
used in equation (3), 0.985, can be considered to be 1.0 with
little error. If that is true then (3) can be rewritten

as

hc(r)b
—T—'=1.u5 Eﬁtana

or
_ E plr)
Ay(F) = 1.45 [E tan o] B (38)

If one defines

R Kk
R = S = 9ZAb
Re = Q k

TR R

-

i) s B2

L
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then

- T(; E, -Z- = 005)
R, = 5 (39)

The boundary conditions now are:

V)
=

at z = 0 5—§—=Hc(r)'r
zZ =1 g-%=°
T =0 Z=0
r=3 %-q

The governing equation 1s the Laplacian, V2T = 0., Because
of the varying hc(r) no analytical solution is avallable,
but the above 1s simple enough to solve numerically. The
final result is a plot of ﬁc versus ¢ for various values
of E tan 6/H. There 1s one such graph for each set of
ry, ¢. It should be noted that the resistance presented
1s for one disk only. In an assembly of two disks the
total resistance would be double that shown here. Figures
54, 55, and 56 show the results.

It was mentioned earlier that the total resistance
was the sum of that due to the bulk and that due to the
resistance at the interface. As one varied the roughness

one might expect that the total effect would decrease or
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increase depending on the operating conditions. From the
figurec shown here it is obvious that this 1s true and
that the quantity E tan 6/H 1s the critical variable.

Depending on the value of r, and ¢, there is a value of

0
E tan 6/H below which one cannot lessen the resistance by
altering the roughness. Conversely, for sufficiently
large values of E tan 6/H one can decrease the reslstance
markedly by increasing the roughness. At intermediate
values there is an optimum roughness at which to operate.
The entire effect seems to be strongly dependent
on the particular value of ?b and ¢ one is at. Compare,
for example, Figures 54 and 56. The effect of roughness
is much more pronounced for a small value of ro than it is
for a large one. This is mostly due to the particular
example being used here. Since heat is forced in through
the sides, the final resistance is strongly dependent on
radius of contact, the first place where the heat can
turn from one plate into the other. If r, is large enough
the majority of the heat flows through the area immediate

to r, and ignores the central area. A large r. implies a

0
large r,- A large r, means that less of the total
resistance is due to the bulk and most is due to the contact
resistance at the interface. Since an increase in roughness
increases the resistance at the interface, then one would

expect the total resistance to increase with greater g for

large ro - For a small ry most of the reslstance 1s due to
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the bulk. Increasing 0 increases the radius of contact
greatly. Therefore the greater part of the resistance
is lessened. Thus, for small rys increasing ¢ tends to
decrease the total resistance.

Therefore the behavior exhibited in these figures
is largely due to the configuration chosen for the example.
If instead of having the heat enter the edges at r = a one
had it enter at the top, z = b, one would arrive at a
different set of curves. These would be more like those
in Figure 56 rather than in Figure 54 since the bulk
resistance would be a minor part of the total.

Actual experiments which measured the thermal
resistance of two disks joined together by a bolt were
perforned by Joseph Pigott [89]. The following description
of the experimental measurements is from Reference [89].

The experiments on contact resistance were done 1n
thé vacuum chamber shown in Figure 57. A vacuum of between
30 microns and 50 microns was maintained to minimize the
effects of interstitial fluid.

The test pileces were made according to Figure 58.
The only geometry lnvestigated had dimensions:

c¢/b = 0.5
ro/b = 1.0
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The radius of the plates may be anythling greater than 5b.
This 1s well beyond the radius of contact.

All runs were made with the same applied pressure to
the joint and the same power input to the system.

Five runs were made with the dimensionless roughness

( cE
bPO

ranging from approximately zero to 16.2.

) ranging from 0.023 to 1.23, and the slope (E tan 6/H)

The resultant temperature profiles (Figures 59,
60, 61, 62, and 63) agree fairly well with the theoretical
predictions. The deviations of 1solated points are probably
due to faulty thermocouple setup.

To find the contact resistance it was necessary to
determire the actual heat rate passing through the test
specimen and an appropriate temperature difference, AT, both
of which appear in the resistance equation:

R = AT
a/A

It 1s known from the pressure distribution that the
plates are not in contact beyond the fourth thermocouple
position (see Figure U1l; the values of r/b correspond to the
thermocouple positions shown in Figure 58). Therefore, by
knowing the temperatures at positions 5 and 6 ard the corre-
sponding radii, the heat rate passing through the test section
can be calculated:

2mkb
in (r6/r5)

(Tg - Ts)
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Since the plates are not in contact and radiation
between the plates was found to be very small, the heat
must flow in one direction: radially. However, it was found
that there was not perfect symmetry across the interface.
Therefore, the temperature difference in the above equation
was found for both the top and bottom plates and the average
of these values was used as the temperature difference.

The resistance equation actually involves a heat flux
rather than a heat rate. Since the flux was calculated between
points 5 and 6, the area chosen was that lateral area of the
cylinder passing through the midpoint between positions 5 and 6.

The temperature difference, KT, may be chosen arbitrarily,
depending on how the resistance is to be defined. 1In the
present case the temperature difference between the top and
bottom plates at the sixth thermocouple position was used in
order to give the total resistance. The theoretical predictions
were given as values of half the total resistance, so the
experimental results were divided by two for comparison.

For convenlience, the resistance equation has been

non-dimensionalezed in the following manner:

Rk _ AT
b Q
= 90
where Q Ak
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The resistances found for the various roughnesses

tested were:

roughness resistance
(rms micrometer) (Rk/b)
7.05 9.95
112.6 10.20
132.7 9.80
270 10.40
303 9.60

These resistances are roughly constant. They
correlate fairly well with the theoretical results in the
same range of parameters (Figure 55). However, the values are
approximately twice those predicted. It 1is believed that this
was caused by an inevitable deviation from radial symmetry
in the test, either in pressure distribution or, more likely,
in heat transfer distribution.

The range of parameters investigated here covers
the range of surface conditions ordinarily found for surfaces
in thermal contact.

For the geometry used and the range of parameters
tested, both the theoretical model and the experimental results
suggest that the roughness has negligible effect on the
resistance of the Joint.

Furthermore, since the range of parameters used here
covers most of the conditions of practical interest, one can

extend the conclusions to a general statement that roughness
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for the bolted joint geometry considered does not strongly
affect the value of thermal contact resistance. Consequently,
from a practical point of view, it 1s not necessary to demand

great care 1in providing smooth surfaces for thermal contact.

L o
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4., 3UMMARY AND CONCLUSIONS

It was noted at the beginning of this paper that
the thermal resistance at a jolint can be divided into two
categorles: that due to the large-scale constriction of
the heat from the maln body to the general contact area
and the «me to the constriction within this contact area
at the asperities. Since an increase in surface roughness
affects these two components 1n opposite directions -
decreasing large-scale resistance, increasing small-scale
resistance - 1t was postulated that one might be able to
decrease the total resistance by increasing the roughness.

Three cases were considered: contact of two
rough, wavy surfaces, contact of two rough but ncminally
flat plates with an applied load over a defined area, and
contact of two rough but nomlnally flat plates joined
together with bolts. The models for the above are, respec-
tively: two spherical surfaces, two disks of finite radilus,
and two disks of finite radius with center holes. An
lterative solution was used where the force and deflectlon
of the bulk was matched to the force and deflection of the
asperities. Solutlons were to be generated for the cases
of zero and nonzero roughness, It was found that to solve
the overall problem one needed force-deflection relation-
ships for asperlities, spherlcal surfaces, and disks both

with and without holes. Such relationships for the
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asperlties and speclal surfaces already existed 1in the
literature. Those for disks with or without holes were
developed 1n this report,

Nondimensional variables were chosen so as to
minimize the information needed to explaln the results.
For the spherical surfaces it was found that all infor-
mation could be expressed on one master graph of 1lnter-
facial pressure distribution as a function of roughness.
For the disks without holes cne master was needed for
each load radius; for the disks with holes one was needed
for each set of hole radius and load radius. In addl-
tion to the geometrical variables needed to describe the
model, it was found that two nondlmensional surface var-

—
-

iables were needed: o and H where

s=2FE (for spherical surfaces)
a,p
h*0

— _0E

0] --EIE)—(-)- (for‘ diSkS)

b =_§Ii
0

It was further found that the results were weakly dependent

on ¥ and strongly dependent on . Given a particular o, H

pair,one could determlne a pressure at an arbitrarily

chosen reference point. Thls pressure would then be

e
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matchzd with that on the master graph to arrive at the
entire distribution. This could be done because all dis-
tributions which agreed at one polnt would agree at all
points. One could also estimate the radius of contact

for various values of ¢ and H. It was also found that
different ranges of ¢ influenced the contact for different
values of geometric properties such as load radius. 1In
general, the surface properties affected the behavior cf
the disks more strongly than that of the spheres.

In the process of developing the force-deflection
relationships needed for the disks with and without holes,
further work was done on the classical midplane stress
problem as discussed by Sneddon, Greenwood, Lardner, et al.
From this it was concluded that the multlple Fourier-
Bessel series technique used to develop the required
solutions to the various models 1s accurate.

The resulting pressure distributions were used
in a heat transfer example to show that one could indeed
lower the overall thermal reslistance of a system wilh an
interface by increasing the surface roughness. It was
found that the resistance (in nondimensional terms)
depends on ¢ and on another quantity, E tan G/H. The latter
determines 1f it 1s at all possible to raise or lower the
resistance by changing ¢. In brief, then, the behavior
discussed at the beginning of the report was found to exist

for all three models considered.
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There are two general areas for which conclusions
may be drawn: the overall problem i1tself and the techniques
used to arrive at the solutions. Considering the value of
E tan 6/H that one might find in practice (.~ 25) the effect
of playing the large-scale constriction off against the
small-scale constriction in order to lessen the overall
resistance 1is not as strong as hoped for. Whlle 1t is
obvious that 1n many cases it 1s not necessary to go through
elaborate (and expensive) finishing prcredures to decrease
the overall resistance, 1t does not seem ¢ -:zible to decrease
the reslistance drastically by 1lncreasir~ _he roughness except
in those cases where the resistance is very sensltive to the
outermost radius of contact.

The multiple series technlique used to develop the
various solutions has been proven successful and, although

laborious to implement, stralghtforward in its application.
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6. AP!.NDIX

6.1 Deformation of Disks with and without Center Holes

It can be shown [85] that the governing equations

for the deformation of a disk of finite outer radius can be

reduced to
Vx =20 (A1)

where
b o1 3 oJ1 of., 3¢
Ve = rar T arl; Br[r arﬂ (A2)

The general solutions to (Al) are

[A cosh(kz) + B sinh(kz)][CJO(kr) + DYO(kr)]
r[A cosh(kz) + B sinh(kz)][CJl(kr) + DYl(kr)]
z[A cosh(kz) + B sinh(kz)][CJO(kr) + DYO(kr)]

if the homogeneous direction is the r axis and

[A cos(kz) + B sin(kz)][CIO(kr) + DKO(kr)]
r[A cos(kz) + B sin(kz)][CIl(kr) + DKl(kP)]

z[A cos(kz) + B sin(kz)][CIO(kr) + DKO(kP)]
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if the homogeneous direction is the z axis. A complete

solution is any combination of the above, e.g.,

X = AC cosh(kz)rJl(kr) + BDz sinh(kz)Yo(kr)

which satlisfies the boundary equations. The constants A, B,
C, D and k are constants to be evaluated and k 1s the

eigenvalue. Stresses and deflections in terms of x are,

2
d 2 )
Tos = 3¢ (1-v)Vy - —)2{[ (A3)
| 92
_oaoon 8%y
OI’ = 37 oy -~ arz (Al)
2 2, _ 3%
9, = 35| (2-v)Vx - 5 (A5)
| 02
_ 0 2 1l 9
g = EEV X - 3 -3-%‘:[ (A6)
o= o Lty 3%y
E 3roz (A7)
w= 1Y L ov)vy + %, 13 (A8)
E X 8r2 r or

coi’
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There : . ¢ a total of eight boundary conditions to satisfy:
two on each face of the disk, two at the outer edge and two
at the inside of the hole wall 1f a hole 1s present or two

at the centerline if a hole 1s not present. It 1s difficult,
if not impossible, to proceed as is done in solving the
Laplacian (V2T=O) and by sight pick the proper choices from
the possible solutions. What follows here 1s a solution
using simultaneous Fourler-~Bessel series. The procedure used
is straightforward but tedious and, therefore, only one com-
plete solution 1s given from beginning to end. In the rest
of the cases only the results are presented. More on this
method of solution can be found in [81].

6.1.1 Disk-No Hole-Midplane Stress

The problem to be solved 1s shown in Figure 213.

Boundary conditions are

at Z = b g. = -p(r)
Ty = 0
r=20 stresses finite (A9)
r =a 0, = 0
Ty = 0
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The governing equation is (Al). From equations (A3) - (A8)

one observes that since

0, is even in 2z

0. 1s even in z

0_ 1s even in z

T is 0odd in 2z

u is even in z

W is odd in z

then x must be odd in z. The original problem is broken

into two separate parts, Figure Al, one homogeneous in z and

satisfying
’ Vuxl =0
and at z = b Tpg = 0
r =20 stresses finite (Al0)
r=a Tz = 0
o, = -0, (as calculated %t

from body 2)

g T ’ Wiy -+ eSO A Lem 220N e,
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and the other homogeneous in r and satisfying

v Xy = 0
and at z = #b g, = -p(r) - g, (as calculated
from body 1)
Ty =0 (A11)
r=20 stresses finite
r =a Thg = 0
The final solution is
X=X *Xx

Note that the boundary conditions as given in (A10) and (All)

add up to the original ones as given in (A9). In body 1 no

Jp—————— m.wnMW‘*’”liﬁ*“’“'? -

restriction is made on 0, After all the other boundary

conditions are met one can solve for cz. This value is then

used in (All) to calculate X5+ There 1s no restriction for
body 2 on Ope The value of 0. calculated for body 2 is used

in calculating Xq -

One, then, iterates back and forth until the solu-

tions are compatible. Another way is to solve them simultan-

eously. In any case one does arrive at a solution.

Observing that both X1 and X, are odd in z, try

Xy = Sin(BZ)[AIO(Br) + BrIl(Br)] (A7)

g upewl s

R
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Xy = Jo(ar)[c sinh(az) + Dz cosh(az)] (A13)

By omitting Y Y Ko, and K, the stresses at r = 0 remain

0> "1° 1
finite. By substituting (Al12) in (A3) one can show that for

Trz =0 at r =2
BaI,(Ba) + 2(1-v)I,(8a)
and for Trz = 0 at z = Db
= on =
Bn =% n=0,1,2... (Al15)

The zeroeth term is a constant term and can he carried along
as the zeroath term in an infinite series or as a constant
outside the series. In this solution 1t 1is carried 1in the

series until the very end. From (Al4) and (Al5), then,

00 B.r
- n
X] ® n=0§1,2 sin(B8 z)B a E;E I,(8,r) - I (B r)

n 1'"n

I.(B_a)
2(1-v) 0 .
":'57;_ + T_TEBE{]} (116)

likewise for Xos

oo sinh(a_2)
Xo % ) Ja(a_r)D b fmi.cosh(a z) - a‘bm
2 m=G,1,2 0 m ""m\ap m m
C‘mb .
“|ev + tanh(amb) (A17)

B - g P T dewee Svesi T W Ty woe, <P et Tl BRORC O M L L P R L B R,

R

R SRR “"»‘“:&x“‘.

PSR
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If one substitutes

3
B_ B7a
LA n_'n
Bn B aT (B ay (A18)
n " 1''n
and
3
D a-b
* m m
D = (A19)
m amb sinh(amb)

one finds that for the original problem as shown in Figure
1A,

*
o B sin(B_z)
X = Z n n
n=

T2 {871y ()T (B0) - To(B,7)
0 B

+[2(1-v)1, (B a) + enaxc(ena)]}

*
DmJO(amr)
3 a z cosh(a_2z)sinh(a_b) - sinh(a_2)
=0 a m m i m
m

° K ¢ AL
[2v sinh(ano) + amb cosh(amb,,} (A20)

and

A
L ngo B,sin(B,z) B, rI (B r)I,(8 a) - B al,(B »)I, (B a)]

R - P i A g TR

TR T L v Y | AR, . oot RN @

et

ot

BT e
%
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e ] *
+ mzu D Jq,(a r)[a 2z sinh(a b)cosh(a z) - a b

. cosh(amb)sinh(amz)] (A21)

*® »
¥ o, = nZO Bncos(an)[Bnrll(enr)Il(Bna) + 2IO(Bnr)Il\Bna)

- BnaIO(Bnr)IO(Bna)]
® »
- mzo DmJo(amr)[amz sinh(amz)sinh(amb) - cosh(amz)

'sinh(amb) - amb cosh(amz)cosh(amb)] (A22)

O
o, = nzo Bncos(an)[Enalo(ﬁnr)IO(Bna) + I,(B, ™I (B 2)

2(1-v)
- 8,rI, (8 a)I, (8 r) - ‘%‘;{-“ I,(8 r)

. e+ - AOOICIIT BTN B, Ny -

B a

n_ -
-Il(ena) - F;F xo(Bna)Il(Bnr{]

o J. (a_r)
v F D* o z[; - 1 °m %]sinh(amz)sinh(amb)

amrJo(amr

Jl(amr) | ( :
+ |1 - “m;jo(amr) [cosh(umz)sinh\amb,

| Jq(a,r)
- a b cosh(e z)cosh(a b)] + 2v a rJTa r)

. cosh(amz)sinh(amb) (A23)

J R i 2t S S

¥

. ~
R Y —
.

o owh T
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There are now two sets of unknowns

B n=0’1’2...w

D m=C,i,2...®

They are found in the normal manner of Fourier-Bessel series,
through orthogonality. The remaining boundary conditions

are,

"
+
o
Q

"

at z -p(r)

=
"
V)
Q
]
o

It i1s now that tre zeroeth terms are removed from the

infinite series. Noting that

Bog = O

and that

one finds from (A22) and (A23) upon substitution into the

boundary conditions that

r~

L B;cos(ﬁnb)[ ]

* IO
-p(r) = 2Dab + }J D J. . (a r)[ ]+
070 mel MO m n=1

(A24)
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and
0 = B;BOa[E - {15311 + vD;aob +:m£1 D;Jc(ama)[ ]
+ ) B:cos(BnZ)[ ] (A25)

n=1

Multiply (A24) by rJO(aOr) and integrate from 0 to a and

multiply (A25) by cos(Boz) and integrate from 0 to +b to get

*
Dydgp = = F2 (A26)
ara
L] F v
BB =T — (A27)
0" 0a 1ra2 1+v

where F is the total load. If Pq is the average pressure

then

Py = F/ma® (A28)

Now repeating the orthogonalizing procedure one arrives at

.  J_(a_a)cos(B.b) i

B'IZ(B.a) = } 4D sinh®(a_b) 0 m n
nln m=1 0 m 2

2 2|Ip(Bpa)

2(1-v°) - (Bna) - -1
Il(Bna)
a_a(B b)3
. m__n (A29)

2
[Ea’b)2 + (snb>%}

s Jou.

BN LS S S 242 7
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and

a
2 sinhz(amb) J rp(r)Jo(amr)dr

*
Dmsinhz(amb) = - —— 0
a Jo(ama)[amb + cosh(amb)sinh(amb)]

MB:Ii(Bna)cos(Bnh)

}
lHe~18

n )
amb cosb(amb)

+
sinh(amb7

sinh2(amb)
3 1
(ama) B2

2
Eama)2 + (Bna)z:l

: aal (a_a) (A30)

We now have the complete solution for a given p(r) when we
combine (A29) and (A30) with (A21), (A22), and (A23).

For the particular loading .s given in Figure 21a.

p(r) = P0 C<r<r0
= 0 r0<1<a
and
em = aa
a=a/b r=1r/
Fa = ry/b z = z/b

g At e

- e
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The mid ‘ane stress is, then,

o re
2 0 === == =
2 = -+ Zl (a,r,ro) +1 (a,r,ry) (A31)
Ol= a 2
z=0
where
o | _ I.(nmr) I, (nmr) _ I (nwa)
()= ] Einnp 2 — + 9 |2 - mg 22— (A32)
1 n=l Il(nﬂa) Il(nwa) Il(nﬂa)
o o 6. cosh(6 /5)‘-
I ()= I Ba,(e,7/3) L .+ 20— (A33)
2 m=1 sinh(em/a) a sinh (em/a)
( )
o 3.3
I - ] 45 Jo(em)COS(mr) N 6 _n-m
A -2 2 2 I"(nma) m 2 2
2(_..—\))-3.1’1‘"’ -T—:-l :7;"’!‘111’
Il(nna) a“
L J
(A3L)

ik d o b

Fobbainn i i

prs
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, EQ Jl(emro/g)
- 2,
a Jo(em)
Bm = - - —
. em/a . cosh(em/a)
m smh%m/a) sinh(6_/2)
_ E 4V a cos( ) .
n=1 ¢ 6,/ cosh(6_/a)
8,.70(8p) » — + —
sinh (em/a) sinh(em/a)
[ b
nﬂ93
m

.

! jQr
E’?‘ + n21r2§2]

{ J

6.1.2 Disk-No Hole-Midplane Stress-Approximate Solution

If the boundary condition

is ignored then the solution to the midplane stress 1is
greatly simplified. The justification for ignoring this
condition lies in St. Venant's theorem. If a >> ry then
any minor change in the boundary conditions at r = a will

not affect the stress distribution in the neighborhood of

(A35)

e RS NPt R St e 5 st S A

~
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Ignoring the boundary condition is equivalent to setting

ro.
Kh = 0. Therefore,
2
2 =~ —=+] (r,r,,a) (A36)
P -2 0
0l5-0 a 3
where

z (;’FO$§) = - g

1 . gm cosh(em/a)
- - 3 —
einh(em/a) a sinh (em/a)

. — (A37)

9 /a cosh(® /a)
9 _7F + m —
Mlsinh (6,/3)  sinh(e _/a)

Equation (A36) is another form of the equations given in

[80,81]. This can be shown through the following. For large

m

mn + w/l

m

em

As a approaches infinity (disk of infinite radius which is

used as a model in [80,81]) define u, such that

em
Uy =
a

e T
Sy e s
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Therefore from (A36) and (A37) with some trigonometriec

rearranging,

2r 1(u r )Jo(umF)

a umaJO(uma)

. 2umz sinh(umz)sinh(um)-cosh(umz)[sinh(um)-+umcosh(um)]
2um + 2 sinh(um)cosh(um)

where the zeroeth term has been returned into the infinite

series. For large values of m

Tetu E) = 320,) = —2- ”
Tu_a -
m
Also
du = lim(u_,.,-u_)
Py m+l m
1
==1[8 .,-6 ]
y m+l m
T
a H
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Therefo .2

1 o du
1im 5

a-+w umaﬁg(umg)

The final expression for the midplane stress 1is, then
o o0
PE = -2?0 J {cosh(uz)[sinh(u) +u cosh(u)] - (uz)sinh(uz)sinh(u)}
0
0

¢ . Jl(uro)Jo(ur) i
2u + sinh(2u)

which is equation (1) in [81].
6.1.3 Disk-No Hole-Variable Load

Since the pressure distribution on each face may
be different (see Figure 6b) three infinite series are

needed. Boundary conditions are

at 2z =0b» g, = -pl(r) = -pp O<r<r,
=0 ro<r<a
! Tpg =0
{
z =0 g, = -p2(r)
T = 0

g

. -
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r =20 stresses finite

for oz and w are:

=2
o r
z 0 - - === = =
=-—t [z,r,a,r. ,p,(r)] -} [2,r,a,r ,p,(r)]
+ 26 [Es;-’-a-s;oasz(;)] (A38)
F2
%FEE = -z ;“3 I BT, - I T5,5,8,5,0,(0),v]
- 29 [z,r,a,r;,P,(T),v] (A39)
where .
® _ I.(nwr) I T
Zu 3 Zl A cos(nmz){nwT 1, o{n7r]
n.

I,(nma) I,(nn3)

I.(nna)
e |2 - nma 2

- (A40)
Il(nwa)

s . T g Pt O
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)
o - sinh(emE/E) _ cosh(emE/E)
'3 sinh(e /&)

sinh(em/a)

\

o, cosh(em/a)
{1 + — —1 7 (A41)
a sinh(em/a)
J
1
° __ | __sinh[8_(1-2)/a)] cosh[8 1-z)/a]
= mzl C.J (8, F/a){ = (1-%) B - LI
= a sinh(em/a) sinh(em/a)
) (8_/a) “
cosh a
1+ 2 1 (A42)
a sinh(em/a)
)
o I,(nrr) I.(nrr)
= I (+v)A sin(nmZ)ir L R i
n=1 Il(nna Il(nna)

_ Io(nwa)

e12(14v) - a (Al43)

—

Il(nwa)

J
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_ cosh(8 _z/a) sinh(e z/a)

z -

! = I Q+v)BJ (e F/3)]

8 m=1 sinh(em/a) sinh(em/a)

J2a-v) ccsh(em/E)

em/E sinh(em/E)

(

® o _ cosh[em(l-i)/EJ
I = I Qw)c Jq.(e T/a){(1-2) -
9 m=l sinh(6 /a)
sinh[e _(1-z)/a]
i sinh(e /a)
2(1-v) cosh(em/E)
. +

“em/a sinh(em/a)

where

em = 0 a = Zero of Jl(em) = 0

and where

(AlLL)

(A45)

(A46)

ety d me

>~
i cai 04 g
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]
!

2_2-3 ®
A ) Un“n“a 7 Em _ (-1)nC]
2, = 1 T
2 o_n|Igfnma)

2(1-v) - n“r“a - -1
Il(nna)

(-1)“J0(em)emnna

2
2 2_2-

(AUT)

2 -
4 sinh (em/a)em

B = -
m )32(e,)[cosh(s /a) + 11[sinn(e /&) + 6_/a)
[ 1
i ®  (-1)".(6 )6 nwa !
. 1 I A L nm 42 J [p, (x) +p,(x)1xJ 5(6 _x)dx
: n=1 [éi . “2"25%] m ),
H [ J
2 2(0_/3
sinh”(6_/2)
+

7g(6,)[cosh(e /&) - 11[sinn(e /&) - 6 /3]

1
. J [p,(x) - pl(X)]rJo(emX)dx (AL8)
0

——
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y sinhzcem/a)

Cp = ~By * 2 - - -
JO(em)[cosh(em/a) - l][sinh(em/a) - em/aj
1l
. J [pz(x) - pl(x)]xJo(emX)dx (A49)
0

6.1.4 Disk-No Hole-Variable lLoad-Approximate Solution

As in section 6.1.2 if one ignores the boundary

condition

at

Q
]
o
i
]
4]

-2
g r
z 0
Z=-=-7 +7 (A50)
P a2 5 6
)
w E - r0
o= -2 =5 - - (A51)
b Py 2° z8 Z9

where ] and 26 are given by (A41) and (A42); 28 and § are

5 9
given by (A44) and (ALS5); Bm is given by (A48); Cm is given
by (A49); and

>y
1]

0 alln (A52)

B




i

DRSNS S e i T

Co e ey L AP 3 oo b

<+

e Y S s W S
-~

[ S

- 179 -

6.1.5 ' isk-Hole-Midplane Stress

Define Co(ﬁnx) and Cl(knx) such that
CO(Anx) = Yo(xnx)Jl(An) - Yl(kn)Jo(knx) (A53)
Cl(knx) = Yl(knx)Jl(An) - Yl(ln)Jl(knx) (A54)

These cylinder functions are combinations of Bessel Functions
and can be treated as a function alone when integrating or

differentiating. An is the eigenvalue.

%5
I xCO(lnx)Co(%mx)dx
il

]
o
g

"
o

2
X 2 _
2 CO(AnX{] m=n
X

where xn is zero of
Cl(knxl) = 0

Cl(Anxz) =

!
o

Also

da .
Ix [CO(“nX)] = -Ancl(knx)

et e it o i 0
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Therefore for the problem shown in Figure 21b where

at zZ = tb o, = =P, c<r<r0
=0 ro<r<a
Tog = 0
r =C 6, =0 (A55)
Typg = 0
r =a Op = 0
Tom = 0

one can arrive at a solution for the midplane stress following
the same procedure as before but using three simultaneous
infinite series. By ignoring the boundary condition o, = 0

at r = a (i.e., aésuming that a >> ro) this 1is reduced to

two infinite series. The results are

o, Fg - ° L
N = -5 + z (r,rO,C,a)
0l .y - C 10
- I (F,7,,c,3) (A56)

R T I

t 223
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[ |
It
e 8

Colw, r/e) - Y, -
A sinh(y /c) + — cosh(y _/c)| (A57)

10 n=1 M sinhz(wn/a) S

o B
= } s [2K,(mn?)K, (mnc) + mmcK,(mmec)K,(mnT)
11 m=1 Ki(mﬂa) 0 1 0 0

- mnFKl(mﬂE)Kl(mnP)] (A58)
and where : :
e Co(y) (1) (mm) 3y .
B = J uA -4 }
mo gz B 2 2 2, =y
K2(mﬂ3) wn + m2n2 2(1-v)-—m2n252 ngfiil -1
1 37 Kl(mwa)
_ \ J
(A59)
. - 2r,C, (v, r/c)
n -
¥n ~ e 2 =22
—|coth(y_/c) + 2 E‘?c (v 3/3) - 3°Co(v )]
c n sinhz(wn/E) 0""n 0" "n

+ I B (-1 — L

m=1 _ v_/3
coth(y /c) + ;‘ —
sinh (wn/c)

ERACZCICTHIR]
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Kl(mﬂE)

The eigenvalue, wn, is defined

cl(wné/a)

-
- K. (mma)
2 a 1 -,
Nmﬂwn Co(wn) - g E—E;;EY'CO(wna/C) _
_ 1 2C4 (v a/e)
+
2

e+ v o+ v

K. (mma) K_(mmec)K, (mma)
2,252 Do _ p2.255 20 1 r

¢, ()

2 -
Kl(mnc)

(A60)

as the eigenvalue which will

(A61)

Tabies of these elgenvalues may be found in refer-

ence [86], Table 9.7, page U415.

With the above formulaii

one can reproduce the midplane stress curves as calculated

PR

‘mﬁw‘mmw L ary—

using a finite-element technique [83,84].
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6.1.6 Disk-Hole-Midplane Stress-Approximate Solution

By ignoring the boundary conditions

one reduces the problem to one infinite series. The first
condition can be safely ignored as mentioned before. Ignoring
the second causes one to underestimate the stress magnitude
near the hole but gives an accurate estimate further out.

The full effect of this assumption is discussed in the main

body of the report. The final result is equivalent to the
approximate technique used in [87].

o, Fe - g2 L
™ = -t ] (r,ry,c,a) (A62)
0l5.0 ac-c 10

where Z is given by (A57). The Fourier coefficient for

is
10

-2Focl(wn50/6)

A =
noov, [:2 2,, =,~ -2
— |a Cl(\pna/c) - CCO(Wn)
c =

¢ )

o4

(A63)

—

1
v -
rtanh(wn/ﬁ) + 2 E - tanh2(wn/c)]
c

\

B
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which is (A60) rewritten with Bm = 0,

6.1.7 Disk-Hole-Variable Load-Approximate Solution

For the problem shown in Figure 6b and boundary

conditions

at

= b g, = -pl(r) = =P, e<r<r,
Tpg = 0

=0 g, = -p,y(r)
Tog = 0

= C Tpz = 0

= a Tz = 0

one needs two simultaneous equations. Note that the boundary

condition °r =

OZ
%o

o = € e - = -
52-52 + 212 [ZsrsPO,C,a,PZ(P)]
[z,r,7,,¢,8,p,(F)] (A6Y)
13 0 2
Fo - ¢° L
=2 =2 + [Z,r,ro,C,a,pz(r),v]
a -c 14

0 at r = ¢ 1s not applied.

=2 =2

s .
*&%w‘wﬂmﬁ‘ﬁ:*wﬂé;&i‘f o4 H




|
-y ;‘,MW@“‘"WWHW WL ar L ke o . paeage

e A TS

_]_85..

-1 Iz,r,ry,c,2,0,(7),v) (A65)
15
where
® - sinh(y_z/c) cosh(y _z/c)
= I ac, (v r/ei-v, % A + 1
12 n=1 n n g sinh(y /¢) sinh(y, /¢)
v cosh(y_/c)
1+ 2 L (A66)
c sinh(wn/c)
® =, sinh[y_(1-2)/c)
I = I B F/a){-y {LZE n___
13 =1 1 n 2 sinh(y_/¢)
\ cosh[wn(l-E)/E] L. EQ cosh(wn/E)
sinh(wn/E) ¢ sinh(wn/E)
(A6T7)
Ch(y _r/c) | vz h(y_z/c) inh(y_z/c)
o r/c Z COS Z/C sin z/¢C
Z=ZA(1+\’)OH l_-n n_+ n-
14 n=1 " wn/E sinh(wn/c) sinh(wn/c)
\
v _ cosh(y_/c)
el2(1=v) + 2 n .} (A68)

c sinh(wn/E{J
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(
© B 5 o
= I —= 420, v,) - (+v)e (v F/e)
15 n=1 wn/c n
) (1-3) coshly (1-z)/e]  sinh[y (1-z)/c]
.| L +
nz sinh(wn/E) sinh(wn/ﬁ)
-]
Y cosh(y_/c)
[2(1-v) + 2 =1} (A69)
c sinh(wn/c)
- )
¥ _/c i Y th(y_/¢)
c coth(y /¢
coth(y /c) + S|P, - L __ ;. o
n sirh®(y_/¢) sinh{y_/G) T sinh(y_/3) 2
A =
n

2 -2
- ¢Q/c
sinhz(wn/a)

(A70)

) v /c th(y _/c
-|coth(y /c) + L P, + ’- 1 +lp:9- coeh vy c)})z
c

sinh2(wn/5) sinh(¥_/%) sinh(y_/T)
°n © 2 ,=2
1 - Wn/c
s1nh2(wn/6)

(AT1)
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- 2§ocl(wn§o/a),

173 2.2 2.2 (A72)
n |~ -,- -
7;.[% Co(wna/c) - C CO\¢ni]
a P,(r)
-2 l —%r—- Eco(wnF/E)di
- 0
P2 = . ¢ (A73)

B2 are) - F2e2w,)]

6.1.8 Semi-Infinite Body-Finite Radius

Figure A2 shows the problem to be solved. The

boundary conditions are

at z =0 o_ = -p(r)

r=20 stresses finite

rz

Z = stresses finite

The governing equatisn is

Vix = 0 (Al)
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Rathe aran using the general solutions given before the
cosh(kz) and sinh(kz) will be split into exp(+kz) and

exp(-kz). Observing that for the stresses to be finite
at z = » the terms containing exp(+kz) cannot exist, one

has for a solution to (Al)
X = Jo(kr)[Ae"kz+Bze‘kZ] (ATH)

Equation (ATY4) satisfies the boundary conditions

at r=20 stresses finite

Z = ® stresses finite

The remaining three boundary conditions are met through the

constants k, A, and B. The results are:

) P o ] -a z
g, = - ;;5-- Zl BnJO(anr)Ll+anZJe (A75)
o J.(a_r) -z
- 1tv 0O'™n _ n
W= S L Bn<——7§:—— [anz + 2(1-v)]e (A76)
Ia
.| rp(r)J,(a_r)dr
B = -2 0 P o (ATT)
n a2 Jg(ana)

ok B o thrr o ey

et
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is zero of Jl(ana) =0

n=1,2,...

(A78)

6.2 Relationships for Hyperbolic and Cylindrical Functilons

then

Let

V2J0(mr)
VZYO(mr)
Vglo(mr)
VzKo(mr)
Verl(mr)
Verl(mr)
v

rIl(mr)

\4

rKl(mr)

_ 1.4 (,d¢
r dr dr
-szo(mr)
—mZYO(mr)
mzlo(mr)
mZKO(mr)
2mJ . (mr) - m2rJ (mr)
0 1
2mY . (mr) - m2rY (mr)
0 1
2mIO(mr) + m2rI1(mr)

-2mKo(mr) +m

2

rKl(mr)
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a sinh(az)cos(bz) + b cosh(az)sin(bz)
a2+b2

[ cosh(az)cos(bz)dz =

a +b2

I z sinh(az)cos(bz)dz = 22 [a cosh(az)cos(bz) +b sinh(az)sin{bz)]

_ (a®-b°)sinh(az)cos(bz) +2ab cosh(az)sin(bz)

(a2+b2)2

T r [C2
rJn(ar)dr = [En(ar) - Jn_l(ar)Jn+l(ari]
U

r
] rIo(br)JO(ar)dr==——£—§ [bJo(ar)Il(br) + an(br)Jl(ar)]

2
0 a“+b

r
2
J rZIl(br)JO(ar)dr==a£1b2 [aIl(br)Jl(ar) + bIO(br)JO(ar)]
0

_ —2br [bJo(ar)Il(br)'+aIO(br)JI(ar)]

(a2+b2)2
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[ rKo(br)CO(ar)dr = ;EEEE [aKO(br)Cl(ar) - bCO(ar)Kl(br)]

2
[ r2Kl(br)CO(ar)dr = —-—31-5 IbKO(br)Co(ar) - aKl(br)Cl(ar)]

a2+b

2br \
+ ——313575 [aKo(br)Cl(ar) - bCO(ar,Kl(br)]

(a

where Co(ar) and Cl(ar) are defined in (A53) and (A54),
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6.3 Truncation of Infinite Series

The problem is: given f(x) such that
£(x) = } A J,(8 x) (AT9)

where On i1s eigenvalue and

Jl(en) = 0 for all n

how can one truncate the infinite series to N terms and get

an accurate result, f(x), where
f(x) = f(x) = B J, (8 x) (A80)

The solution is to use local smoothing where the average
value of the function is used rather than the precise value

at x [88]. That is, 1let

X+e
f(x) = & l £(y)dy (A81)
X~

One must now choose the interval 2e over which to sample.
To gain an insight into this try this method with an infinite

series using circular functions, e.g.

GG ahst: Dot <, rimesists S dinert % s " T
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g(x) = I C,sin(kx)

g(x) = } D, sin(kx)

from (A81) one observes that

D. = sineglfk) o

k k

or

Cksin(kx)

- - ? sin(ek)
i ek

Thus the original series with the original coefficient returns
but with a truncation term. If the interval € i1s chosen such

that

€ n/N

then the last truncation term will be zero and the general

form for the truncation term, tk, will be;y

t, = ————  k=0,1,... (A82)

L i
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note

11m Sin(8)

§-+0

The net result 1is to welght the lower frequencies against
the higher on2s. We can therefore expect to reproduce the
function accurately in reglons of slow change. The term
tk given by (A82) is the term used for all Four.er series
using circular functions whether they are in tefms of cos,
sin, or a combination of the two.

To find the truncation term for Fourier-Bessel

series once again applies (A81),

X+e -
T(x) = =
f(x) = e [ L___g . A Jo(eny)jldy
X-€ ’ ‘
or
N N xte
1
] BJ. (8 x)= ] A =— J,(0_y)dy
n=G,1 ©» 0''n n=0,1 O 2¢€ e 0 "n

where all terms after N in the original series are ignored.
The integral 1s not avallable in closed form but if one

notices that

Jo(z) -> % éos(z—ﬂ/ll)
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as z + © then 1t seems reasonable to try as a truncation
term a form similar to (A82). By trial and error it was

found that the best solution was

t_ = n=1,2,...N (A83)

In any Fourier series, Bessel or circular, the zeroeth term
gives the average value over the range or the level. In

both (A82) and (A83) the truncation term to, is 1 so this
average value is unchanged. Therefore, at worst, the truncated
series will accurately predict t..e average behavior. It

should be noted from (A83) that

limt_=1
N+ n

and we have back the original infinite series.
Figure A3 shows the advantage of the truncation term.

In this case

-
v
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f(x) = 1 0<x<1/2
= 0 1/2<x<1 (AB4)

The solution (where x is a radial co-ordinate) 1is

© J. (8 /2)
f(x)=%.+ j i o

J (8_X%) (A85)
o 2 0''n
n=1 anJo(en)

where en is a zero of
Jl(en) = 0

In Figure A3 the original function (A84) is shown
along with the first ten terms of the infinite series solution

(A85). By using the truncation term with N=10,

Gn-3w/h
sin W ™
" .en-3n/u 5'
8, —3n/0 " %
10 :

a more exact estimate is made of the original function. This

[P SR

new estimate removes the oscillations about the true value
because it gives less and less weight to the higher frequency

terms but it does not predict corner effects very well because

S SRR Tt nest Daeem B . ’ S T T N T : s 4 . . . TR E
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it does ignore the high frcquencies. Adding more terms to
the truncated serles improves the estimate at the corners

as shown in Figure AH4.
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EXACT
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MODIFIED— IO TERMS
081 /
MODIFIED —20 TERMS
0.6
x
-
f(X)=] O<X<0.5
04k 20 0.5<X510
0.2
0 lv A1 L 1 <M | )
0.3 0.4 05 0.6 0.7

TRUNCATED INFINITE SERIES
FIG. A4
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6.4 Computer Programs

In the following programs different nomenclature
was used than that found in this report. Following is a list

of the important changes.

This Report Computer Programs
a RHO
c LAMBDA
ro RO
r R
y E
o)
—_— YO
bpO
oE S
bp0
H/p, H
%2
5 SIGMAZ
°© z=0
wE
bPo W
z=0
NU
tn SIG(N)

6.4.1 Disk with No Hole

This program calculates the interfacial pressure

distribution and deflection of two rough plates in contact.

- ’ - . - - B - it . o - .
R e LA T LT O W ¢ = R T T LN o R S . RV
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The input data 1is FO’ a, v, N, oE/bp_, H/P,, pp0, and wt.
N is the maximum number of terms to be used in the Fourier

series. The flrst estimate of the pressure distribution i.

Q

J

5e)

el

o
"SII"SI
O N N

and by inputing pp0 the user has an opportunity to start
the iteration close to the final value. After an iteration
is done the new stress distribution to be used 1s calculated
from fhe original one, 0,5 and from the one as calculated

#
from the deformation of the asperities, o, as

*
(oz)new = wt-oz + (1--Wt)-oZ

Therefore the user can influence the speed of convergence

of the procedure. Input format is as follows:

CARD1 r.,, a, v, N (3F10.3,110)

O,
CARD 2 S, H, pp0, wt (UF10.3)

CARD 3 S, H, pp0, wt (new set)

[ 4
L)

LAST CARD BLANK

. 2 R < gt 4 . i g v o
J U PR # - T CH A P A L e o

3 e v e 8

s oo

g -
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Example:

31
]

1.1

7.3

oI
|

and try two sets of S and H,

S = 10 S = 100

H = 100 H = 150
pp0 = 1 pp0 = .8
wt = .5 wt = .25

the data cards are as follows:

T 10 10 10 10
1.100 7.300 .250 4o
10.000 100.000 1.000 .500
100.000 150.000 . 800 .250
(blank)

CARD 1
CARD 2
CARD 3
CARD 4

et UM B WA

.
T s e ey
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The program is written in FORTRAN IV and was
compiled and run on an IBM 360/65 computer system. CPU
time for ten complete iterations 1s in the neighborhood of

seven minutes. Without compiling, 94K of core is used. The

program follows.
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6.4.2 Disk with Hole

The only modification to the previous program is
that the radius of the center ..ole, ¢, must be entered as
data. This is done in card #1 at the beginning so that this

card reads,

CARD 1 ¢, FO, a, v, N (4F10.3,I10)

All other cards and instructions remain the same.
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6.4,3 Auxiliary Programs

Each of the previous sections listed the main
calling program and the subroutine which would calculate the
stress for the particular disk. This section gives the
listings for the miscellaneous programs needed for integrating,
calculating zeroes of Bessel Functions, calculating values of
Bessel Functions, giving output, etc. These programs are
self-explanatory. The beginning of each main program lists

the subroutlnes needed for that program.
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The author was born in Upper Darby, Pennsylvania
on December 28, 1944, He received his preliminary educa-
tion 1in the Upper Darby Township school system and eritered
Lehigh University in 1962. After graduating with honors
in 1966 with a Bachelor of Sclence degree in Mechanical
Engineering he joined Bell Telephone Laboratories.

He received his Master of Science degree in 1967
from the Massachusetts Institute of Technology under the
sponsorship of Bell Laboretories. His Master's thesis was
entitled: "Information Flow in Fluid Lines." 1In 1969 he

returned to M.I.T. under Bell Laboratories' Doctoral Support

Program and completed his study in 1971. He is currently
in the BTL Data Communications Technology Laboratory in
Holmdel, New Jersey.

While with Bell Laboratories he has worked on
various material and thermal problems dealing with micro-
electronics including the design of hybrid integrated cir-

culits. He 1s married and the rather of two children.

PV
.

« s

- — s W,





